
Thales e-Security

nShield Microsoft SQL Server
Integration Guide

www. t ha les-esecur it y . com

Version: 2.2

Date: 04 July 2016

Copyright 2016 Thales UK Limited. All rights reserved.

Copyright in this document is the property of Thales UK Limited. It is not to be reproduced, modified,
adapted, published, translated in any material form (including storage in any medium by electronic
means whether or not transiently or incidentally) in whole or in part nor disclosed to any third party
without the prior written permission of Thales UK Limited neither shall it be used otherwise than for the
purpose for which it is supplied.

Words and logos marked with ® or ™ are trademarks of Thales UK Limited or its affiliates in the EU
and other countries.

Information in this document is subject to change without notice.

Thales UK Limited makes no warranty of any kind with regard to this information, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Thales UK
Limited shall not be liable for errors contained herein or for incidental or consequential damages
concerned with the furnishing, performance or use of this material.

nShield Microsoft SQL Server Integration Guide 2

Contents
Chapter 1: Introduction 6

This guide 6

Product configurations 7

Supported platforms and environments 7

Supported Thales nShield functionality 9

Requirements 9

Terminology 9

More information 11

Contacting Support 11

Chapter 2: Overview 12

Querying encrypted data 14

Chapter 3: System installation and configuration 17

Supported platforms and environments 17

Installation 17

Setting up as stand alone service 18

Usagewith database failover clusters 18

SQL Server database failover cluster using nShield Solo 19

SQL Server database failover cluster using nShield Connects 21

SecurityWorlds, key protection and failover recovery 23

Chapter 4: Configuring and using the SQLEKM provider 25

Enabling the SQLEKM provider 25

Creating a credential 26

Checking the configuration 28

Encryption and encryption keys 29

Key naming, tracking and other identity issues 29

Supported cryptographic algorithms 30

Symmetric keys 31

nShield Microsoft SQL Server Integration Guide 3

Creating and managing asymmetric keys 34

Importing keys 36

Transparent Data Encryption - TDE 37

Creating a TDEKEK 38

Setting up the TDE login and credential 39

Creating the TDEDEK and switching on encryption 39

Verifying by inspection that TDE has occurred on disk 39

To replace the TDEKEK 40

To replace the TDEDEK 40

Switching off and removing TDE 40

How to check the TDE encryption/decryption state of a database 41

Cell Level Encryption (CLE) 42

Encrypting and decrypting a single cell of data 43

Encrypting and decrypting columns of data 45

Creating a new table and inserting cells of encrypted data 46

Viewing tables 48

Checking keys 48

Changes in the SQLEKM provider require SQL Server restart 53

Chapter 5: Security World Data and back-up/restore 54

The local directory 55

Disaster recovery 56

Backing up 57

Backing up a database with SQL Server Management studio 58

Restoring from a back-up 59

Chapter 6: Troubleshooting 62

Chapter 7: Uninstalling and Upgrading 64

Turning off TDE and removing TDE setup 64

Uninstalling the Thales Database Security Option Pack for SQL Server 65

Upgrading 66

Appendix A: T-SQL shortcuts and tips 67

nShield Microsoft SQL Server Integration Guide 4

Creating a database 67

Creating a table 67

Viewing a table 68

Making a database backup 69

Adding a credential 69

Removing a credential 69

Creating a TDEDEK 70

Removing a TDEDEK 70

Switching on TDE 70

Switching off TDE 70

Dropping an SQLEKM Provider 70

Disabling SQLEKM Provision 71

Resynchronizing in an availability group 71

Checking encryption state 71

Appendix B: Restarting a recovered HSM 72

Appendix C: Using TDE within an AlwaysOn availability group 73

Setting up and switching on TDE 73

Taking a log backup 79

Removing TDE encryption from an AlwaysOn availability group 80

Appendix D: Using an OCS quorum of K/N where K>1 82

Overview 82

Using the preload utility 82

Example for standalone system 83

Operational considerations 84

Internet addresses 86

nShield Microsoft SQL Server Integration Guide 5

Chapter 1: Introduction

Chapter 1: Introduction
This guide applies to the Thales Database Security Option Pack for Microsoft SQL Server® that must
be activated for use with Thales nShield hardware security modules (nShield HSMs). It provides data-
at-rest encryption for sensitive information held by Microsoft SQL Server.

Thales are pleased to announce that the Thales Database Security Option Pack for Microsoft SQL
Server® has been tested and certified to meet Microsoft Gold standard for SQL Server 2014.

The product works in combination with nShield HSMs, Thales Security World Software, and Enterprise
Editions of Microsoft® SQL Server® 2008, SQL Server® 2008 R2, Microsoft® SQL Server® 2012 and
Microsoft® SQL Server® 2014 to provide a high quality SQL Extensible Key Management (SQLEKM)
provider. It is designed to be integrated into a Microsoft SQL Server database infrastructure with
minimal disruption.

The Thales SQLEKM provider supports Transparent Data Encryption (TDE) and Cell-Level Encryption
(CLE) (and both concurrently), and also supports multithreaded operations. The nShield HSM is
certified to the level of FIPS 140-2 to deliver a high level of security assurance. Its functions include
protection of sensitive encryption keys and support for offload of encryption and key management
operations.

This guide
The guide provides:

l An overview of how the Microsoft SQL Server, Thales Database Security Option Pack, Thales
Security World software, and nShield HSMs may work together in order to enhance security.

l Installation instructions
l Configuration options
l Examples and advice on how the product may be used
l Troubleshooting advice
l Uninstall, and upgrade instructions

You can find the installer and all the associated configuration files and executables for the Database
Security Option Pack for SQL Server on the supplied installation media.

This guide cannot anticipate all situations in which it may be desired to use the Thales SQLEKM
provider. Example configurations and T-SQL scripts shown in this guide have all been tested to work
and are given in good faith. However, these examples should be used primarily to learn how to use
the SQLEKM provider, or adapted to your own circumstances. Thales accepts no responsibility for loss
of data incurred by use of examples or any errors in this guide. For your own reassurance, it is
recommended you thoroughly check your own solutions in safe test conditions before committing them
to the production environment. If you require additional help in setting up your system, please contact
Thales support.

nShield Microsoft SQL Server Integration Guide 6

Chapter 1: Introduction

Product configurations
The integration between the HSM and the SQLEKM provider has been tested for the following
combinations:

Windows Server
operating system
version

Microsoft SQL Server
version (Enterprise
Edition)

Security World
Software version

nShield
Solo
support

nShield
Connect
support

2012 R2 64-bit 2014 SP1 12.00 Yes Yes
2012 R2 64-bit 2012 SP2 12.00 Yes Yes
2012 R2 64-bit 2012 SP3 12.00 Yes Yes
2012 R2 64-bit 2012 SP3 12.10 Yes Yes
2008 R2 SP1 64-bit 2008 R2 SP3 12.00 Yes Yes
2012 64-bit 2012 11.62 Yes Yes
2008 R2 SP1 64-bit 2008 R2 11.62 Yes Yes
2008 R2 SP1 64-bit 2012 11.50 Yes Yes
2008 R2 64-bit 2008 R2 11.50 — Yes
2008 64-bit 2008 R2 11.50 — Yes
2008 32-bit 2008 R2 11.50 — —
2003 R2 32-bit 2008 R2 11.50 Yes —
2003 64-bit 2008 R2 11.50 Yes —
2003 32-bit 2008 11.50 Yes —

Note: It is not always possible to update the list of tested configurations immediately after a new SQL
Server version, Service Pack, cumulative update or fix is released by Microsoft. However,
provided the SQL Server EKM API remains unchanged, past history indicates it is very likely
the SQLEKM provider will work with new updates. If a configuration is not listed here, this
does not necessarily imply the configuration has not been tested, or is not supported, or will
not work.

If a configuration is not listed above and you require more explicit information about tested
configurations, or are having configuration problems, please contact Thales support.

If in doubt, we always recommend you use the latest update packs from Microsoft.

You should always test your configuration in a safe environment before committing to a production
environment.

Supported platforms and environments
The Database Security Option Pack (or the SQLEKM provider) for SQL Server is fully compatible with
V11.40 or higher of the Security World Software and a range of Thales nShield HSMs.

The SQLEKM provider supports the following Thales nShield HSMs:

l nShield Solo 10+, 500, 6000, 500+, and 6000+
l nShield Connect 500, 1500, 6000, 500+, 1500+, and 6000+.

nShield Microsoft SQL Server Integration Guide 7

Supported platforms and environments

The latest SQL Server service packs and cumulative updates may change. You should always check
you are using the latest versions available from Microsoft, and update as necessary.

The SQLEKM provider has been tested to support the Enterprise Editions of:

l Microsoft SQL Server 2008 (with Service Pack 1)
l Microsoft SQL Server 2008 R2 (with Service Pack 3)
l Microsoft SQL Server 2012 (with Service Pack 3)
l Microsoft SQL Server 2012 (with Service Pack 2)
l Microsoft SQL Server 2014 (with Service Pack 1).

These are supported on the following platforms:

l Windows Server 2003 Enterprise Edition (32-bit and 64-bit configurations)
l Windows Server 2008 Enterprise Edition (32-bit and 64-bit configurations)
l Windows Server 2008 R2 Enterprise Edition (64-bit configuration)
l Windows Server 2012 Standard (64-bit configuration)
l Windows Server 2012 R2 Standard (64-bit configuration).

nShield Microsoft SQL Server Integration Guide 8

Chapter 1: Introduction

Supported Thales nShield functionality
You can access the following functionality when you integrate a nShield HSM with the Microsoft
SQL Server:

Functionality Support Functionality Support
Soft cards Yes Key Management Yes
Strict FIPS (FIPS 140-2 Level 3) support Yes Key Recovery Yes
Module Only Key No 1 of N Card Set Yes (see note 1)
Key Generation Yes Key Import Partial (see note 2)
Fail Over Yes Load Balancing Yes

Note: 1 K of N Card Set where K>1, is technically supported, but is not recommended, see
Appendix D: Using an OCS quorum of K/N where K>1 on page 82.

Note: 2 Key import is supported for pkcs11 keys only. Please see Importing keys on page 36.

Requirements
This guide assumes that:

l Your chosen version of Microsoft SQL Server is already installed. Your installation must include the
latest service pack updates and hotfixes available from Microsoft.

l You are familiar with the administration and configuration of Microsoft SQL Server. This includes
database clustering, if you wish to use it.

l You are familar with the T-SQL language and can perform basic SQL tasks such as creating a
database or tables, etc.

l All users who wish to install, set up, configure or use the Thales Database Security Option Pack for
SQL Server have a SQL Server login and appropriate permissions.

l You are familiar with the installation and configuration of Thales nShield Security World software
and HSMs.

l You are familiar with database security concepts and practices. This guide provides provides basic
examples of how to set up and use the Thales SQLEKM provider, but is not a primer on in-depth
database security issues.

Terminology
To make this guide more straightforward to read:

l Microsoft SQL Server 2008, Microsoft SQL Server 2008 R2, Microsoft SQL Server 2012 and
Microsoft SQL Server 2014 Enterprise Editions are referred to as simply SQL Server.

l The Thales nShield Security World software is referred to as the Security World software. It is a
collection of programs and utilities that are used to administer, operate and maintain the Security
World.

nShield Microsoft SQL Server Integration Guide 9

Terminology

l The Security World means the HSM(s), ACS cards, OCS cards, softcards, encryption keys or other
cryptographic material, that function in accordance to the Security World type. Often, when we
talk about the Security World, we also imply the Security World software needed to make it
function.

l Cryptographic files which represent ACS cards, OCS cards, softcards, encryption keys or other
cryptographic material used by the Security World, are called Security World data, and are held in
the Security World folder, see Chapter 5: Security World Data and back-up/restore on page 54.

l The Security World type refers to the characteristics of the chosen Security World. In this document
only FIPS Level 2, or FIPS Level 3 will be mentioned. Please see your HSM User Guide for more
information about Security World characteristics.

l The Database Security Option Pack for SQL Server working in conjunction with the Security World
and Security World software is referred to as the SQLEKM provider (the Option Pack cannot
function without the Security World).

Note: EKM is the Extensible Key Management (EKM) API provided for Microsoft SQL Server.

Where SQL Server Management Studio is referred to in the following text, any actions to be
performed through its interface will normally be through its SQL Server Management Studio pane.

Encryption keys that have been made accessible to a database through the SQLEKM provider are
accessible through references provided to the database. Copies of the real keys do not exist in the
database. However, for convenience as a figure of speech, we may describe the keys that are
referenced by the database as if they were loaded into the database or copied to the database.

With respect to SQL Server database clustering:

l If shared network drives are used, the active server is the cluster server currently in ownership of
the shared drive.

l If an availability group is used with no shared drive, the active server is the one acting as the
primary replica.

Commonly-used acronyms

ACS Administrator Card Set
API Application Programming Interface
CLE Cell-Level Encryption
DLL Dynamic Link Library
EKM Extensible Key Management
FIPS Federal Information Processing Standard (U.S.)
GUID Global Unique Identifier
HSM Hardware Security Module
ID Identity
OCS Operator Card Set
RFS Remote File System
SQL Structured Query Language
TDE Transparent Data Encryption
TDEDEK Transparent Data Encryption Database Encryption Key
TDEKEK Transparent Data Encryption Key Encryption Key
T-SQL Transact Structured Query Language

nShield Microsoft SQL Server Integration Guide 10

Chapter 1: Introduction

More information
For more information about:

l Installing a Thales nShield HSM, see the Installation Guide for your HSM
l Security World Software, see the appropriate User Guide for your HSM
l Microsoft SQL Server, visit the dedicated Microsoft web site at
http://www.microsoft.com/sqlserver/

l Thales e-security as a Microsoft partner, see https://pinpoint.microsoft.com/en-
us/companies/4295545937.

This guide forms one part of the information and support provided by Thales. You can find additional
documentation in the document directory of the installation media for your product.

Contacting Support
To obtain support for your product, visit http://www.thales-esecurity.com/en/Support.aspx.

Before contacting the Support team, click Useful Information and use the subtopics to see the
information that the team requires.

nShield Microsoft SQL Server Integration Guide 11

http://www.microsoft.com/sqlserver/
https://pinpoint.microsoft.com/en-us/companies/4295545937
https://pinpoint.microsoft.com/en-us/companies/4295545937
http://www.thales-esecurity.com/en/Support.aspx

Chapter 2: Overview

Chapter 2: Overview
This chapter provides an overview of how the Extensible Key Management (EKM) API, as provided for
Microsoft SQL Server, can be used to protect databases through encryption. It explains how the Thales
Database Security Option Pack for SQL Server supports this by including the security benefits of a
nShield HSM and associated Thales Security World software. A brief description of how to perform
encryption operations on Microsoft SQL Server using the SQLEKM provider is also given.

Note: Encryption should be part of a wider scheme of security practices to protect your database
assets that should take into account any regulatory or legal requirements for data protection.
Administration and management of encryption within any organization is a serious issue that
requires appropriate training and resources.

Note: Data in transit between a database server and client may not be encrypted. Communication
between servers and clients should be independently encrypted to ensure security during data
transmission. The encryption schemes described here are designed only to protect data at rest.

Figure 1 provides a graphical overview of the cryptographic architecture outlined here.

SQL Server:

Database 1
SQLEKM

provider

Logic

Client
HSM

Disk

storage

Off-site back-up storage:

Disk

storage

Disk

storage

TDE Cell-level encryption

Master

database
Card set Softcard

‘abc’

Database 2

Figure 1. Cryptographic architecture

A Microsoft SQL Server service permits the creation of one or more databases. When a client request
is made to the SQL Server, it determines which of the databases are the subject of the query, and
loads data that is the subject of the query into available memory from disk storage.

nShield Microsoft SQL Server Integration Guide 12

Chapter 2: Overview

From a security perspective, the Microsoft SQL Server supports the use of cryptographic keys to
protect its databases. These encryption keys can be used to perform two levels of encryption.

l Transparent Data Encryption (TDE) is used to encrypt an entire database in a way that does not
require changes to existing queries and applications. A database encrypted with TDE is
automatically decrypted when SQL Server loads it into memory from disk storage, which means that
a client can query the database within the server environment without having to perform any
decryption operations. The database is encrypted again when saved to disk storage. When using
TDE, data is not protected by encryption whilst in memory. Only one encryption key at a time per
database can be used for TDE.

l To use Cell-Level Encryption (CLE), you must specify the data to be encrypted and the key(s) with
which to encrypt it. CLE uses one or more keys to encrypt individual cells or columns. It gives the
ability to apply fine-grained access policies to the most sensitive data in a database. Only the
specified data is encrypted: other data remains unencrypted. This mode of encryption can
minimize data exposure within the database server and client applications. You can apply CLE to
database tables that are also encrypted using TDE. Note that when using CLE, data is only
decrypted in memory when required for use. Separate data can be encrypted using different
encryption keys within the same data table.

There may be administrative issues and performance trade-offs between speed and security,
regarding use of TDE or CLE, but these issues are beyond the scope of this overview.

Cryptographic keys can be stored by the database itself, or off-loaded to a SQLEKM provider. Use of a
SQLEKM provider is more secure because encryption keys are stored separately from the associated
encrypted data. Typically, a SQLEKM provider will also support encryption acceleration and enhanced
facilities dedicated to the generation, back up, management and secure protection of the encryption
keys. These facilities become more important as the amount of encrypted data, and the number of
encryption keys, increases.

Other benefits of using the Thales SQLEKM provider include:

l Ability to store keys from all across an enterprise in one place for easy management
l Key Retention (rotate keys while keeping the old ones)
l Reduced costs of regulatory compliance
l FIPS certification
l Common criteria certification.

When the nShield HSM(s) and Thales SQLEKM provider have been correctly set up, the appropriate
encryption keys can be made available to a Microsoft SQL Server database. Authorized access to the
secure environment of a HSM and encryption keys under its protection is controlled by an Operator
Card Set (OCS) or a softcard. To use an OCS or softcard, you must first set up a database credential.

To read from or write to an encrypted database, a user must have all of the following:

l An authorized database login, with password, that maps to an appropriate database credential.
l The correct OCS cards, or knowledge of the correct softcard(s).
l The passphrase(s) associated with the OCS cards or softcard(s).
l The Thales Security World holding the encryption keys.
l For CLE, knowledge of the encryption keys in use, and their passwords (if any).
l A Thales nShield HSM with the software to drive it and, if necessary, the authorized administrative
mechanisms to load it with the Security World data.

nShield Microsoft SQL Server Integration Guide 13

Querying encrypted data

l Knowledge of the appropriate encrypted database to read or write to
l Electronic access to the encrypted database.

If Security World data (or encryption keys) are lost, they can be securely recovered from a backup as
authorized through secure administrative means. It is important to maintain an up-to-date backup of
your data.

Note: When use of encryption keys is legitimately made available to the database, the continuing
security of data protected by those keys becomes dependent on access offered through SQL
Server in accordance with your organisation’s security policies.

For more information about:

l Configuring the SQLEKM provider to perform encryption operations on SQL Server, see Chapter
4: Configuring and using the SQLEKM provider on page 25

l Restoration of Security World data from backup, see Disaster recovery on page 56.

Querying encrypted data
When the client sends a query to SQL Server, the SQLEKM provider checks the level of encryption on
the database that is the subject of the query.

Figure 2. Querying encrypted data: process diagram

If SQL Server uses a database that employs TDE, the process of loading the assigned encryption keys
and encrypting the database when it is stored is done automatically. The reverse decryption operation
is also automatic when a TDE encrypted database needs to be used and is loaded into memory.

nShield Microsoft SQL Server Integration Guide 14

Chapter 2: Overview

If a database is encrypted using TDE only, this is transparent to the client or user who does not need to
be aware of the encryption status or specify any encryption or decryption operations when querying
the database. Backup and transaction logs are similarly encrypted.

CLE can be used with or without TDE. In either case, when using CLE the target data must be explicitly
encrypted in memory before being stored, or explicitly decrypted after being loaded into memory from
storage. You must specify:

l The fields to be encrypted or decrypted.
l The (correct) cryptographic key to be used.

CLE is not automatic. If you use it, you must be aware of the encryption or decryption process.

Note that if TDE is used in combination with CLE, then after the CLE has been performed, the
encrypted cells will be additionally encrypted by the TDE process when the data is stored. When the
TDE process decrypts, the cells are returned to memory in their original encrypted form and must be
decrypted a second time using the appropriate cell-level cryptographic key. The database-level TDE
processes remain automatic.

Example queries

The following example queries use a database table of customer information that includes first names,
second names and payment card numbers. The queries concern the details of customers whose first
names are Joe.

Example 1: TDE encryption/decryption only

In this example, the entire database is encrypted with TDE.

Cust

ID

First name Second name CardNumber

01 Joe

Joe Smith

Bloggs [16-dig credit card number]

02

03

[16-dig credit card number]

[16-dig credit card number]

Iain Hood

Database: TestDatabase

Table: Customers

T
D

E

Figure 3. TDE encryption/decryption only

nShield Microsoft SQL Server Integration Guide 15

Querying encrypted data

The database is decrypted when it is loaded into memory from disk storage. As this happens before
the query is performed, the query does not have to specify any decryption operation:

USE TestDatabase

SELECT * FROM Customers WHERE

FirstName LIKE ('%Joe%');

Example 2: TDE combined with CLE/decryption

In this example, the database is encrypted with TDE, and the column of credit card numbers in the
table of customers is additionally protected with CLE.

Cust

ID

First name Second name CardNumber

01 Joe

Joe Smith

Bloggs [16-dig credit card number]

02

03

[16-dig credit card number]

[16-dig credit card number]

Iain Hood

Database: TestDatabase

Table: Customers

T
D

E

Cell-level encryption

Figure 4. TDE and CLE/decryption

The query does not have to take account of TDE on the database because it is automatically decrypted
on loading into memory from disk storage before the query is performed. However, the query must
specify the (cell-level) decryption of the column of credit card numbers before the details of customers
called 'Joe' can be returned.

USE TestDatabase

SELECT [FirstName], [SecondName], CAST(DecryptByKey(CardNumber) AS VARCHAR)

AS 'Decrypted card number'

FROM Customers WHERE [FirstName] LIKE ('%Joe%');

nShield Microsoft SQL Server Integration Guide 16

Chapter 3: System installation and configuration

Chapter 3: System installation and
configuration
This chapter describes:

l Installation and enabling the Database Security Option Pack for SQL Server to create the SQLEKM
provider, including failover cluster examples.

l Configuring the SQLEKM provider for use.
l Generation of encryption keys.
l Use of both TDE and CLE on SQL Server databases.
l Encryption key checking or tracking.

For the SQLEKM provider software to function, it must be used in combination with Microsoft SQL
Server software, a nShield HSM and Security World software. After these have been installed it also
requires a usable Security World.

Supported platforms and environments
Refer to Product configurations on page 7 for information about supported platforms and
environments.

Installation
The installation described here assumes the Microsoft SQL Server software is already installed. Ensure
that all the latest service packs, updates and hotfixes for this software have been added.

A SQL Server login and appropriate permissions are required for all users who wish to install,
configure or use the SQLEKM provider. Suitable permissions can be granted by a system administrator
according to your company access policy.

During the installation process you may be required to create or reference environment variables used
by the Security World software (e.g. NFAST_KMDATA or NFAST_KMLOCAL). For further information about
environment variables, refer to the User Guide for your HSM.

The installer and associated configuration and executable files for the SQLEKM provider are on the
supplied Database Security Option Pack for SQL Server installation disk.

To install the SQLKM provider as a stand-alone service, please refer to the section Setting up as stand
alone service on page 18. To install the SQLKM provider within a database cluster environment,
please refer to the section Usage with database failover clusters on page 18.

nShield Microsoft SQL Server Integration Guide 17

Chapter 3: System installation and configuration

Setting up as stand alone service
Note: Before installing the Database Security Option Pack, you must install the Security World

software. See the User Guide for your HSM for installation instructions.

To install the Database Security Option Pack for SQL Server:

1. Add %NFAST_HOME%\toolkits\pkcs11 to the PATH environment variable.
2. Insert the installation disk DVD in your server drive. If it does not run automatically, launch

setup.exe manually.
3. The Welcome screen of the InstallShield wizard is displayed. Click Next.
4. To accept the license agreement, click Yes. You also have the option to print the license

agreement.
5. The SQLEKM provider software will be automatically installed to the default destination directory

of %NFAST_HOME%.
6. A setup status screen is displayed, showing the progress of the installation. When the setup files

finish installing, you are asked if you want to restart the machine now or later. To restart the
machine at this point, select Yes, I want to restart my computer now and click Finish.

7. Add the following line to the %NFAST_HOME%\cknfastrc file:

CKNFAST_LOADSHARING=1

8. If you are intending to use DES or RSA_512 keys you should also add the following line to the
%NFAST_HOME%\cknfastrc file:

CKNFAST_OVERRIDE_SECURITY_ASSURANCES=all

DES and RSA_512 keys are not recommended for use with Thales nShield products, and
are not supported in some Security World types. For further information see Supported
cryptographic algorithms on page 30.

9. If you are using an nShield Connect, configure the system as described in the nShield Connect
User Guide.

10. If you do not have a Security World created, or loaded, on your server's HSM, you must do it
now. You will also need an OCS cardset or softcard.
See Security Worlds, key protection and failover recovery on page 23 if you are configuring a
system to take into account automatic failure recovery.

11. See the User Guide for your HSM for instructions on checking the installation of the nShield
PKCS #11 library with the ckcheckinst command line utility.

Usage with database failover clusters
The Thales SQLEKM provider can function as part of a Microsoft SQL Server database failover cluster.
Two typical configurations are shown as examples that each incorporate a two-node failover cluster
using a shared disk. A further example of configuring an AlwaysOn availability group with no shared
disk for TDE encryption is given in Appendix C: Using TDE within an AlwaysOn availability group on
page 73.

nShield Microsoft SQL Server Integration Guide 18

SQL Server database failover cluster using nShield Solo

If you require assistance for different clustering arrangements, please contact Thales support.

If you are using shared disk arrangements, the first example in section SQL Server database failover
cluster using nShield Solo on page 19, shows a configuration based on nShield Solo HSMs. The
second example in section SQL Server database failover cluster using nShield Connects on page 21
shows a configuration that employs network based nShield Connect HSMs.

User access to the failover cluster will typically be through a virtual server that will have its own name
and IP address.

l Using the examples, the SQLEKM provider will be installed separately on each server in the cluster.
l The same version of the SQLEKM provider must be installed on each server. The version can be
found by inspecting the sqlekm entry in the version.txt file that is part of the installation suite.

l In the example configurations, if failure occurs on either server 1 or server 2, then all database
functionality including the SQLEKM provider will be transferred to the remaining server. There may
be a short loss of service while the failover process completes. See Security Worlds, key protection
and failover recovery on page 23 for discussion of which Security World type or protection to use.

SQL Server database failover cluster using nShield Solo

Figure 5. SQL Server database failover cluster using nShield Solo

nShield Microsoft SQL Server Integration Guide 19

Chapter 3: System installation and configuration

Figure 5 shows a two node database failover cluster example that is configured to use nShield Solo
based HSMs. To implement this configuration:

1. On server 1, complete the installation instructions in Setting up as stand alone service on page
18 (all steps, including Security World creation).

2. On server 2, complete steps 1 to 8 of the installation instructions in Setting up as stand alone
service on page 18. Do not create a Security World on server 2.

3. For the database cluster to function correctly in failover mode, the Security World data must be
held in the shared network drive for the cluster. If the shared network drive is S: then create the
following directory path on that drive, through the active server:

S:\<MyDirectory>\local

4. On server 1 and server 2, do the following:
a. Create the environment variable %NFAST_KMLOCAL% and set its value to that of the shared

directory path, e.g. NFAST_KMLOCAL=S:\<MyDirectory>\local
Note: The Security World should already exist on server 1, and be loaded onto its HSM.

b. Make server 1 active in the cluster. From server 1 the contents of the directory %NFAST_
KMDATA%\local must be copied to the shared directory S:\<MyDirectory>\local.

5. Make server 2 active in the cluster. Load the Security World onto the HSM. See the User Guide
for your HSM if you require help.

6. Use the nfkminfo utility to check the Security World on each server.
7. Before using the SQLEKM provider it must be enabled and a credential(s) set up as described

later.

Note: If you have installed Thales V12.00 Security World software and you are using Java cards, be
sure you have warranted your nShield Solo, and configured the cardlist file appropriately. In a
cluster, you will need the same cardlist file contents on all servers in order to access the same
cards. Please refer to the User Guide for your nShield HSM.

nShield Microsoft SQL Server Integration Guide 20

SQL Server database failover cluster using nShield Connects

SQL Server database failover cluster using nShield Connects

Figure 6. SQL Server database failover cluster using nShield Connects

Figure 6 shows a two node database failover cluster example using a shared disk that is configured to
use nShield Connects. You will need a separate host to act as the RFS in this configuration. An
example of configuring an AlwaysOn availability group with no shared disk for TDE encryption is
given in Appendix C: Using TDE within an AlwaysOn availability group on page 73.

nShield Microsoft SQL Server Integration Guide 21

Chapter 3: System installation and configuration

Note: In this example, if there is failure of the entire system (for instance a temporary power loss)
then the RFS and nShield Connects should be re-powered before the failover cluster.

To implement this configuration:

1. Install Security World software on the RFS. See the appropriate User Guide for your HSM for any
help.

2. On the RFS, make the directory %NFAST_KMDATA%\local a shared directory that is visible on the
network. Grant permissions on the shared network folder for all users of the SQL Server database
who will also need to use the SQLEKM provider.
Note: As well as permissions to use the shared folder, the users will also require remote access

permissions to the RFS. If your SQL Server process is running as an autonomous service
user, this must be granted similar permissions. Check your company security policies
before making changes to permissions.

3. On server 1 and server 2, complete steps 1 to 8 of the installation instructions in Setting up as
stand alone service on page 18. Do not create a Security World on the servers.

4. On the server 1 and server 2, set the system environment variable %NFAST_KMLOCAL% to point to
the shared network folder on the RFS. e.g. NFAST_KMLOCAL=\\<RFS IP address>\local or NFAST_

KMLOCAL=\\<RFS Name>\local.
Note: Make sure you DO NOT set this as a local variable.
l Check that you can see the remote folder from server 1 and server 2 by running:

dir "%NFAST_KMLOCAL%"

l Ensure that all users granted permission to use the SQL Server and SQLEKM provider can see
the remote folder in this way.

5. Set up the RFS to use the nShield Connect(s), and the nShield Connect(s) to use the RFS. See the
nShield Connect User Guide for help.

6. Set up the nShield Connect(s) to use server 1 and server 2 as clients, and for the clients to use
the nShield Connect(s). See the nShield Connect User Guide for help.

7. Create or load the desired Security World on the RFS or an nShield Connect. Ensure the Security
World is loaded onto each nShield Connect used in the configuration. See the User Guide for
your HSM if you require help.

8. Use the nfkminfo utility to check the Security World on each server and the RFS.

9. Before using the SQLEKM provider it must be enabled and a credential(s) set up as described
later.

Note: If you have installed Thales V12.00 Security World software and you are using Java cards, be
sure you have configured the cardlist file appropriately. In a cluster, you will need the same
cardlist file contents on all servers in order to access the same cards. Please refer to the User
Guide for your nShield HSM.

nShield Microsoft SQL Server Integration Guide 22

Security Worlds, key protection and failover recovery

Security Worlds, key protection and failover recovery
This section briefly highlights some considerations when choosing Security World and key protection
options for use with the SQLEKM provider. It focusses on recovery of Security World authorization
where a system has temporarily failed (for instance after a power outage) and is then returned to
operation. This does not apply to other failure recovery functions. These considerations are applicable
to both standalone systems and database failover clusters. For a fuller explanation of Security World
types and key protection please refer to the User Guide for your HSM.

Note: Module protected keys are not supported by the SQLEKM provider. Therefore, direct
protection of encryption keys that can be used without requiring further authorization
mechanisms is not possible.

In the event of a temporary failure of the SQLEKM provider, there may be a consequent loss of:

l Credential authorization.
l FIPS authorization (only if using a strict FIPS [FIPS 140-2 Level 3] Security World).

A credential authorization can be granted using either a softcard or an OCS card, with passphrase.
In the case of an OCS, a card must be always available in a valid HSM card reader in order to grant
re-authorization after a failure, and permit automatic recovery. See Creating a credential on page 26
for more information.

Where FIPS authorization is required, this can be granted either by using an operator card
specifically for this purpose, or through an operator card that is also used for credential authorization.
A card from the OCS must be always available in a valid HSM card reader in order to grant re-
authorization after a failure, and permit automatic recovery.

Note: Never use ACS cards for FIPS authorization, as they will not support automatic recovery.

Note: The softcards and OCS used must all be members of the same Security World.

nShield Microsoft SQL Server Integration Guide 23

Chapter 3: System installation and configuration

Using these options, a summary of the authorization recovery behavior of the SQLEKM provider after
a temporary outage is given in the table below.

Security World
type

Protection /
Credential

Standalone system Database cluster

Any Module Not supported Not supported

FIPS
Level 2

Softcard Recovers automatically. Recovers automatically.

OCS

Use OCS for credential
authorization:

l Use 1/N quorum. Same
passphrase for all cards.

l Leave an operator card in
HSM slot.

Recovers automatically.

Use OCS for credential
authorization:

l Use 1/N quorum. Same
passphrase for all cards.

l Leave an operator card in
slot of every HSM in
cluster.

Recovers automatically.

FIPS
Level 3

Softcard

Use OCS for FIPS
authorization (only):

l Leave an operator card in
HSM slot.

Recovers automatically.

Use OCS for FIPS
authorization (only):

l Leave an operator card in
slot of every HSM in
cluster.

Recovers automatically.

OCS

Use OCS for both credential
and FIPS authorization:

l Use 1/N quorum. Same
passphrase for all cards.

l Leave an operator card in
HSM slot.

Recovers automatically.

Use OCS for both credential
and FIPS authorization:

l Use 1/N quorum. Same
passphrase for all cards.

l Leave an operator card in
slot of every HSM in
cluster.

Recovers automatically.

If you are using an OCS to facilitate automatic recovery of the SQLEKM provider:

l If you are using the OCS for credential authorization, all must be members of the same cardset for
the same credential, and the same passphrase must be assigned to every card in the set.

l If you are using the OCS for FIPS authorization purposes only, the quorum automatically defaults to
1/N, and (any) passphrase is ignored.

Note: Authorization acquired through a persistent operator card will not automatically reinstate itself
after loss due to a temporary failure.

nShield Microsoft SQL Server Integration Guide 24

Chapter 4: Configuring and using the SQLEKM provider

Chapter 4: Configuring and using the
SQLEKM provider
Note: In the example T-SQL statements featured in the remaining part of this guide, the names used

for cryptographic keys (such as dbAES256Key) and databases (such as TestDatabase) are
example names only. The only exception to this rule is the master database, which is a real
database.

To run these examples, open SQL Server Management Studio and connect to a SQL Server instance,
then open a query window to execute a query.

If you are using a failover cluster, run the examples through the virtual server. Otherwise, use the
active server in the cluster. Note that any directory/file paths will be relative to the active server.

Please note:

l You must have an SQL Server login and appropriate permissions to configure or access the SQL
Server or SQLEKM provider. You may need your system administrator to provide these.

l You must have a usable Security World loaded onto your server’s HSM to register the SQLEKM
provider. See Installation on page 17.

Note: If you have installed Thales V12.00 Security World software and you are using Java cards,
then:

l be sure you have configured the cardlist file appropriately,
l if you are using an nShield Solo, be sure it is warranted.

Please refer to the User Guide for your nShield HSM.

Enabling the SQLEKM provider
To enable the SQLEKM provider on SQL server for both TDE and cell level encryption:

1. Ensure the following line exists in %NFAST_HOME%\cknfastrc :

CKNFAST_LOADSHARING=1

Note: For a cluster configuration, this line must be present in the cknfastrc file on all servers
(RFS and clients) within the cluster.

2. Enable support for SQLEKM providers within SQL Server by executing the following query:

sp_configure 'show advanced options', 1; RECONFIGURE;

GO

sp_configure 'EKM provider enabled', 1; RECONFIGURE;

GO

nShield Microsoft SQL Server Integration Guide 25

Chapter 4: Configuring and using the SQLEKM provider

3. Register the SQLEKM provider with the SQL Server by executing the following query:

CREATE CRYPTOGRAPHIC PROVIDER <Name of provider>

FROM FILE = '<Path to provider>';

GO

Where:
l <Name of provider> is the name that is used to refer to the SQLEKM provider.
l <Path to provider> is the fully qualified path to the ncsqlekm.dll file in the installation
directory.

For example:

CREATE CRYPTOGRAPHIC PROVIDER SQLEKM

FROM FILE = 'C:\Program Files (x86)\nCipher\nfast\bin\ncsqlekm.dll';

GO

The SQLEKM provider installation wizard copies a 32-bit DLL into ncsqlekm.dll on 32-bit systems,
and a 64-bit DLL into ncsqlekm.dll on 64-bit systems.
The alternative bit length version is named either ncsqlekm32.dll or ncsqlekm64.dll, depending
on the installation platform.

4. To check that the SQLEKM provider is listed:
a. Open SQL Server Management Studio on the Management Studio.
b. Go to Security > Cryptographic Providers. You should see <Name of provider>, e.g

SQLEKM.

Creating a credential
A SQL Server credential represents the OCS, or softcard, and associated passphrase that is used to
authorize access to specific keys protected by the SQLEKM provider. The OCS or softcard must
already exist before attempting to create a credential. When using an OCS cardset with the SQLEKM
provider, use a 1/N quorum.

Note: Encryption keys can be protected by only one OCS cardset, or else softcard, at any one time.
By implication, this also applies to the SQL Server credential that represents that OCS cardset
or softcard.

Note: You can transfer key(s) from one OCS cardset to another OCS cardset, or from one softcard to
another softcard. You must use the 'rocs' utility to perform the key transfer. Please see the User
Guide for your HSM for more details. However, you cannot transfer keys between an OCS
cardset and softcard.

If you are using a failover cluster you will need to create the OCS or softcard directly through the
active server. Please refer to the User Guide for your HSM for further information about creating an
OCS or a softcard.

A SQL Server credential can support only one security token (OCS or softcard) at a time with one
passphrase. The passphrase is stored within the credential and is required at set up of the credential
only. If you are using an OCS cardset and wish to use the OCS cards interchangeably, they must all
be programmed with the same passphrase and be from the same OCS cardset.

nShield Microsoft SQL Server Integration Guide 26

Creating a credential

Note: We recommend that you always use a strong passphrase of at least 10 characters in length.
However, you should also consult your organisation’s security policies.

Once created, the credential must in turn be associated with a particular login before it can be used.
The owner of that login is then authorized to use that credential to create or use encryption keys that
are protected by the OCS or softcard related to the credential.

A login can be associated with only one credential at a time, but a credential can be associated with
several logins at a time.

It is by use of credentials and logins that access to encryption keys for use in SQL Server can be
controlled through the SQLEKM provider. For this reason you should restrict who can use a credential.
It is beyond the scope of this guide to deal with user access permissions and your organisation’s
security policies. However, please be aware that if a valid credential and associated OCS card or
softcard is available to an unauthorized user, who is then able to associate that credential with their
login, this represents a security risk (the token’s password is stored in the credential and cannot be
used to identify the user). This may be less of an issue when using TDE encryption, for which users
authorized to access the database do not need an associated credential in any case, but it may be an
issue with Cell encryption.

Countermeasures to reduce these risks may be made through SQL Server or Windows access
permissions in accordance with your security policies. Options that may be considered are to restrict
use of the OCS or softcards by identifying the relevant files amongst the Security World data, and
setting their access permissions to authorized users only. You can identify OCS cards and softcards
using the Thales nfkminfo utility as follows:

l OCS cards: use nfkminfo –c

l Softcards: use nfkminfo –s.

You will see the OCS card or softcard names (as exist) and their associated hash number. Look in the
Security World data and set appropriate permissions for all files that share the same hash number as
the OCS or softcard you are protecting, see The local directory on page 55 for more information
about file hash numbers.

Note: You may use multiple credentials if you wish to simultaneously use TDE and cell-level
encryption. You are advised to set up your cell-level credentials and associated encryption keys
first, before setting up the TDE login/credential and switching TDE on, see Transparent Data
Encryption - TDE on page 37 and Cell Level Encryption (CLE) on page 42.

To create a credential and map it to a login:

1. In SQL Server Management Studio, navigate to Security > Credentials.
2. Right-click Credentials, then select New Credential .
3. Set Credential name to loginCredential.
4. Set Identity to <OCSname>, where <OCSname> matches the name of the OCS or softcard.

You must match the character case.
5. Set Password to <passphrase>, where <passphrase> matches the passphrase on the card set or

softcard. You must match the character case.
6. Ensure Use Encryption Provider is selected, then from the <Name of provider>, drop-down list,

choose <Name of provider> e.g. SQLEKM. Click OK.
7. Check that under Security > Credentials the name of the new credential appears. If necessary,

right click and select Refresh.

nShield Microsoft SQL Server Integration Guide 27

Chapter 4: Configuring and using the SQLEKM provider

8. In SQL Server Management Studio, navigate to Security > Logins.
9. Right-click to select the required login, then select Properties.
10. Ensure Map to Credential is selected, then select loginCredential from the drop down list. Click

Add, then click OK.

Checking the configuration
To check that the SQLEKM provider was configured correctly:

1. Check that the SQLEKM provider was registered correctly by running the following query:

SELECT * FROM sys.cryptographic_providers;

A table is displayed with information about the registration of the SQLEKM provider. Check that:
l The build version matches the sqlekm version number (found in the SQLEKM installation
versions file).

l The .dll path matches the path given when registering the SQLEKM provider (e.g.
C:\Program Files (x86)\nCipher\nfast\bin\ncsqlekm.dll.)

l The is_enabled column is set to 1.
2. Check the SQLEKM provider properties by running the following query:

SELECT * FROM sys.dm_cryptographic_provider_properties;

A table is displayed with information about the properties of the SQLEKM provider. Check that:
l provider_version matches the sqlekm version number (found in the SQLEKM installation
versions file). The number may be in a different format, but digits should be the same.

l friendly_name is nCipher SQLEKM Provider

l authentication_type is set to BASIC

l symmetric_key_support is set to 1

l asymmetric_key_support is set to 1

3. To check that the supported cryptographic algorithms can be queried, run the following query:

DECLARE @ProviderId int;

SET @ProviderId = (SELECT TOP(1) provider_id FROM sys.dm_cryptographic_

provider_properties

WHERE friendly_name LIKE 'nCipher SQLEKM Provider');

SELECT * FROM sys.dm_cryptographic_provider_algorithms(@ProviderId);

GO

A table is displayed with the supported cryptographic algorithms. For more information about the
algorithms that should be displayed, see Supported cryptographic algorithms on page 30.
Note: If a strict FIPS (FIPS 140-2 Level 3) Security World is used DES key type support is

removed.

nShield Microsoft SQL Server Integration Guide 28

Encryption and encryption keys

Encryption and encryption keys
When you have completed the configuration of the SQLEKM provider, and you have a suitable
credential associated with your login, you can use the SQLEKM provider to:

l Manage cryptographic keys within the Thales nShield HSM.
l Encrypt or decrypt entire databases or fields within tables within your SQL Server service using TDE
or Cell encryption, or both at the same time.

Encryption keys can be created in the SQLEKM provider and referenced by the appropriate database
as required for use. When a reference of an encryption key is no longer required for active use in the
database, it should be deleted from the database while retaining the original copy of the key in the
SQLEKM provider, which also acts as a secure backup. Storing original copies of encryption keys in
the SQLEKM provider is more secure than leaving encryption key references and associated data
together in the database. So long as you retain a copy of the original key in the SQLEKM provider, its
reference can be restored when next required for active use in the database.

Note: Copying and deletion of keys does not apply to a TDE Database Encryption Key (TDEDEK),
which is created as an integral part of a user database. On the other hand, this can apply to
the wrapping key (TDEKEK) which is used to protect the TDEDEK. See Transparent Data
Encryption - TDE on page 37.

Copies of encryption keys that are retained in the SQLEKM provider (or Security World) are in turn
protected by inbuilt encryption facilities, and cannot be read or decrypted without suitable
authorization mechanisms. Even if a Security World or HSM is stolen, it will be useless to anyone who
does not have access to the correct authorization mechanisms.

You must be very careful if you consider deleting an original encryption key from the SQLEKM
provider; once deleted from there, it is lost for good, unless you have a prior backup of the Security
World. Similarly, you must be very careful before dropping any of the authorization mechanisms such
as OCS cards, softcards, ACS cards, and their associated passwords. Loss of these could also mean
you lose access to your encryption keys.

It is recommended to regularly re-encrypt your data using fresh encryption keys so that any persistent
attempts to decipher or compromise your encrypted data are impeded.

Note: Encryption keys can be protected by only one OCS cardset, or else softcard, at any one time.
By implication, this also applies to the SQL Server credential that represents that OCS cardset
or softcard.

Note: You can transfer key(s) from one OCS cardset to another OCS cardset, or from one softcard to
another softcard. You must use the 'rocs' utility to perform the key transfer. Please see the User
Guide for your HSM for more details. However, you cannot transfer keys between an OCS
cardset and softcard.

Key naming, tracking and other identity issues
Encryption keys held in the database are really references to actual keys held in SQLEKM provider. For
the purpose of key tracking, it is suggested that you use the same name for both the database and
SQLEKM provider version of an encryption key. Use a suffix or prefix to distinguish between the
database and SQLEKM provider versions.

nShield Microsoft SQL Server Integration Guide 29

Chapter 4: Configuring and using the SQLEKM provider

In a database there can be only one key with a specific name at any one time. However, note that key
names can be duplicated for different keys in the SQLEKM provider. Even though possible, we
strongly discourage permitting duplicate key names in the SQLEKM provider, since this simply leads to
confusion and potential operational errors.

If you have very many keys, you may wish to implement a key naming convention that helps you track
which keys encrypt which data, backed up with some form of secure documentation. Note if a key
naming convention incorporates a database identifier, a Security World can hold keys for more than
one database at the same time, and a key can be used in more than one database at a time.

If you are using more than one security world you should ensure you can physically identify the ACS
and OCS cards that belong to each Security World.

Once a Security World is loaded onto a HSM, its OCS cards can be inserted into the card reader and
individually identified with cardset name and creation sequence number using Thales supplied
utilities.

Additionally, you can name individual OCS cards when the OCS cardset is created. The keys a card
is protecting can be identified using the Thales rocs utility.

To use the examples in this document you will first need to create TestDatabase and TestTable as
shown in Creating a database on page 67 and Creating a table on page 67. Otherwise, provide
your own database and table to perform encryption operations and adapt the examples accordingly.
Refer to Verifying by inspection that TDE has occurred on disk on page 39 before adapting any
examples. See also Appendix A: T-SQL shortcuts and tips on page 67.

Note: Encryption keys created under a login that is mapped to a particular credential will be
protected by that credential. If you wish to transfer keys to another OCS or softcard please see
the User Guide for your HSM.

Note: You can check which keys are protected under which credential by using the Thales rocs
utility; see the User Guide for your HSM for details. If you are using rocs in a failover cluster
environment, you must use it on the active server.

Note: If you are protecting encryption keys with an OCS credential, an operator card must be
inserted into the HSM card reader of every HSM that is part of the configuration to create or
authorize use of the encryption keys.

Supported cryptographic algorithms
The algorithms that you can use for encryption depends on whether the Thales nShield HSM is
compliant with the FIPS 140-2 Level 2 or the FIPS 140-2 Level 3 security standard.

For more information about cryptographic algorithms and FIPS 140-2 Level 3, see the User Guide for
your HSM.

The following table lists cryptographic algorithms that you can use with symmetric keys.

Algorithm FIPS 140-2 Level 2 FIPS 140-2 Level 3
DES Yes No
Triple_DES Yes Yes
Triple_DES_3KEY Yes Yes

nShield Microsoft SQL Server Integration Guide 30

Symmetric keys

Algorithm FIPS 140-2 Level 2 FIPS 140-2 Level 3
AES_128 Yes Yes
AES_192 Yes Yes
AES_256 Yes Yes

The following table lists cryptographic algorithms that you can use with asymmetric cryptographic
keys.

Algorithm FIPS 140-2 Level 2 FIPS 140-2 Level 3
RSA_512 Yes Yes
RSA_1024 Yes Yes
RSA_2048 Yes Yes

Note: Although DES and RSA_512 keys can be used, this is mainly for compatibility with legacy
systems. Otherwise they are not recommended for use with Thales nShield products. You must
modify the PKCS #11 library configuration file to use these keys. For more information, contact
Thales Support.

Symmetric keys

Symmetric key GUIDs

When a new symmetric key is generated through the SQLEKM provider, it is associated in the
database with aGlobal Unique Identifier or GUID. The database issues a different and random GUID
for every new key, and uses the GUID to identify the correct symmetric key for encryption or
decryption purposes. As long as a copy of this key with the same GUID remains available to the
database, it can be used indefinitely.

If the key is lost to the database, then a cryptographically equivalent duplicate can be generated
through the SQLEKM provider from the copy stored in the HSM. The duplicate key, although
cryptographically identical to the lost key, will be issued with a new GUID by the database. Because
the GUID is different from the original key it will not be identified with the original key, and will not be
allowed to perform encryption or decryption of the data with which the lost key was associated.

To avoid this issue, you should always specify an IDENTITY_VALUE when generating a symmetric key.
IDENTITY_VALUE is used to generate the key GUID in the database. The examples below create a
symmetric key in the SQLEKM provider, and make available the same key for use in the database. The
key does not have to share the same name between the SQLEKM provider and database.

Note: The GUID issue does not apply to asymmetric keys.

Original key

To create a symmetric key with an identity value:

nShield Microsoft SQL Server Integration Guide 31

Chapter 4: Configuring and using the SQLEKM provider

USE <Your_database_name>

CREATE SYMMETRIC KEY <Name_of_key_in_database> FROM PROVIDER <Name_of_SQLEKM_provider>

WITH PROVIDER_KEY_NAME='<Name_of_Key_in_SQLEKM_provider>',

IDENTITY_VALUE='<Unique_GUID_generator_string>',

CREATION_DISPOSITION = CREATE_NEW, ALGORITHM=<Symmetric_algorithm_desc>;

GO

Where

l <Your_database_name> is the name of the database for which you wish to provide encryption. See
Appendix A: T-SQL shortcuts and tips on page 67 for examples.

l <Name_of_SQLEKM_provider> is the name of the SQLKM provider you are using.
l <Name_of_key_in_database> is the name you wish to give the key in the database.
l <Name_of_key_in_SQLEKM_provider>is the name you wish to give the key in the SQLEKM
provider. Please note that there is a length restriction on this name of 31 characters maximum if
created using a T-SQL query.

l <Unique_GUID_generator_string> is a unique string that will be used to generate the GUID.
l <Symmetric_algorithm_desc> is a valid symmetric key algorithm descriptor.

Note: If the value of the <Unique_GUID_generator_string> is known to an attacker, this will help
them reproduce the symmetric key. Therefore it should always be kept secret and stored in a
secure place. We recommend the <Unique_GUID_generator_string> should be a minimum of
10 characters in length and have qualities similar to a strong passphrase. Check your
organisation’s security policy.

Only one key that has been created using a particular IDENTITY_VALUE can exist at the same time in
the same database.

Creating a duplicate key

This example shows how a duplicate of a lost symmetric key can be made through the SQLEKM
provider from the HSM copy, and imported into the database.

To create a duplicate key:

USE <Your_database_name>

CREATE SYMMETRIC KEY <Name_of_key_in_database> FROM PROVIDER <Name_of_SQLEKM_provider>

WITH PROVIDER_KEY_NAME='<Name_of_Key_in_SQLEKM_provider>',

IDENTITY_VALUE='<Unique_GUID_generator_string>',

CREATION_DISPOSITION = OPEN_EXISTING;

GO

Where <Unique_GUID_generator_string> is the same value as used to create the original key.

Creating and managing symmetric keys

Note: If you are using a credential based on an OCS, ensure that your operator card is inserted in
the HSM card reader before attempting to create and manage symmetric keys.

This query generates a new symmetric key through the SQLEKM provider which will be protected
inside the HSM. It then makes the key available to the database.

nShield Microsoft SQL Server Integration Guide 32

Symmetric keys

USE TestDatabase

CREATE SYMMETRIC KEY dbAES256Key

FROM PROVIDER <Name of SQLEKM provider>

WITH PROVIDER_KEY_NAME='ekmAES256Key',

IDENTITY_VALUE='Rg7n*9mnf29xl4',

CREATION_DISPOSITION = CREATE_NEW, ALGORITHM=AES_256;

GO

Where <Name of SQLEKM provider> is the name that is used to refer to the SQLEKM provider.

In this example, the key is named dbAES256Key in the database and ekmAES256Key in the SQLEKM
provider.

Listing symmetric keys in a database

To list the symmetric keys in a database:

1. Open SQL Server Management Studio on the Management Studio.
2. Go to Databases > TestDatabase > Security > Symmetric Keys (right-click to select Refresh).

Alternatively, you may check keys by following the methods shown in the section Checking keys on
page 48.

Removing symmetric keys from the database only

To remove the symmetric key (dbAES256Key, created in the above procedure) from the database only
(TestDatabase):

USE TestDatabase

DROP SYMMETRIC KEY dbAES256Key;

GO

After the above query completes, the key dbAES256Keyis deleted from the database, but the
corresponding key ekmAES256Key remains in the HSM and is accessible through the SQLEKM provider.

Re-importing symmetric keys

To re-import the symmetric key (dbAES256Key) that was removed from the database, where a
corresponding copy (ekmAES256Key) exists in the HSM:

USE TestDatabase

CREATE SYMMETRIC KEY dbAES256Key FROM PROVIDER <Name of provider>

WITH PROVIDER_KEY_NAME='ekmAES256Key',

IDENTITY_VALUE='Rg7n*9mnf29xl4',

CREATION_DISPOSITION = OPEN_EXISTING;

GO

This example uses the same IDENTITY_VALUE as in the original key generation. This regenerates the
same GUID. Having the same GUID means that the key is logically identical to the key it replaces.

nShield Microsoft SQL Server Integration Guide 33

Chapter 4: Configuring and using the SQLEKM provider

Removing symmetric keys from the database and provider

To remove a symmetric key (dbAES256Key) from both the database (TestDatabase) and the Thales
nShield HSM, execute the following query:

USE TestDatabase

DROP SYMMETRIC KEY dbAES256Key REMOVE PROVIDER KEY;

GO

Using this method means you do not have to name the corresponding key in the SQLEKM provider to
remove it from there.

Note: Refer to your security policies before considering deleting a SQLEKM provider key from the
HSM.

You cannot import a key into the database once you have deleted that key from the SQLEKM provider.
Once deleted from the SQLEKM provider, if you have no Security World backup copy of that key, it
will be lost.

Creating and managing asymmetric keys
Note: The GUID issue that affects symmetric keys does not apply to asymmetric keys, and the

IDENTITY_VALUE for GUID generation is not required.

Note: If you are using a credential based on an OCS, ensure that your operator card is inserted in
the HSM card reader before attempting to create and manage asymmetric keys.

Creating an asymmetric key

The following query generates a new asymmetric key in the SQLEKM provider which will be protected
inside the HSM, and then makes the key available to the database:

USE TestDatabase

CREATE ASYMMETRIC KEY dbRSA2048Key FROM PROVIDER <Name_of_key_in_SQLEKM_provider>

WITH PROVIDER_KEY_NAME=’ekmRSA2048Key’,

CREATION_DISPOSITION = CREATE_NEW, ALGORITHM=RSA_2048;

GO

<Name_of_key_in_SQLEKM_provider> is the name you wish to give the key in the SQLEKM provider.
Please note that there is a length restriction on this name of 31 characters maximum if created using a
T-SQL query.

This example names the key dbRSA2048Key in the database, and ekmRSA2048Key in the SQLEKM
provider.

Listing asymmetric keys in a database

To list the asymmetric keys in a database:

1. Open SQL Server Management Studio on the Management Studio.
2. Go to Databases > TestDatabase > Security > Asymmetric Keys (right-click to select Refresh).

nShield Microsoft SQL Server Integration Guide 34

Creating and managing asymmetric keys

Alternatively, you may check keys by following the methods shown in the section Checking keys on
page 48.

Removing an asymmetric key from the database only

To remove the asymmetric key (dbRSA2048Key, created in the above procedure) from the database only
(TestDatabase):

USE TestDatabase

DROP ASYMMETRIC KEY dbRSA2048Key;

GO

After the above query completes, the key dbRSA2048Key is deleted from the database, but the
corresponding key ekmRSA2048Key remains in the SQLEKM provider.

Re-importing an asymmetric key

To re-import a deleted asymmetric key (dbRSA2048Key) back into the database (TestDatabase), where a
corresponding copy (ekmRSA2048Key) exists in the SQLEKM provider:

USE TestDatabase

CREATE ASYMMETRIC KEY dbRSA2048Key

FROM PROVIDER <Name of provider> WITH PROVIDER_KEY_NAME='ekmRSA2048Key',

CREATION_DISPOSITION = OPEN_EXISTING;

GO

Removing an asymmetric key from the database and provider

To remove the asymmetric key (dbAES256Key) from both the database (TestDatabase) and the Thales
nShield HSM, execute the following query:

USE TestDatabase

DROP ASYMMETRIC KEY dbRSA2048Key REMOVE PROVIDER KEY;

GO

Using this method means you do not have to name the corresponding key in the SQLEKM provider to
remove it from there.

Note: Refer to your security policies before considering deleting a SQLEKM provider key from the
HSM.

You cannot import a key into the database once you have deleted that key from the SQLEKM provider.
Once deleted from the SQLEKM provider, if you have no Security World backup copy of that key, it
will be lost.

nShield Microsoft SQL Server Integration Guide 35

Chapter 4: Configuring and using the SQLEKM provider

Creating a symmetric wrapped key from an asymmetric wrapping key

To create a symmetric wrapped key (dbSymWrappedKey1) from an asymmetric wrapping key
(dbAsymWrappingKey1), execute the following query:

USE TestDatabase

CREATE ASYMMETRIC KEY dbAsymWrappingKey1 FROM PROVIDER <Name of provider>

WITH PROVIDER_KEY_NAME='ekmAsymWrappingKey1',

CREATION_DISPOSITION = CREATE_NEW, ALGORITHM=RSA_2048;

CREATE SYMMETRIC KEY dbSymWrappedKey1

WITH ALGORITHM = AES_128,

IDENTITY_VALUE ='yr7s365$dfFJ901'

ENCRYPTION BY ASYMMETRIC KEY dbAsymWrappingKey1;

Where <Name of provider> is the name that is used to refer to the SQLEKM provider.

Note: If you wish to delete the wrapped and wrapping keys, you will have to delete the wrapped key
first.

Importing keys
By ‘importing keys’ we should distinguish between:

l Importing a key into the database that was created in the SQLEKM provider.
l Importing a (foreign) key that was created outside the SQLEKM provider into its Security World.

If a key was created by the SQLEKM provider independently of the SQL Server interface, you must
restart SQL Server in order for the presence of the key to be registered, see Changes in the SQLEKM
provider require SQL Server restart on page 53. Keys created in the SQLEKM provider can be
imported into a database provided they are in pkcs11 format. Other formats will not be recognized by
the database.

As regards keys created outside the SQLEKM provider, it is not recommended to import such keys into
the Security World unless they are from a trustworthy source. Importing of externally created keys into
the Security World may require format conversion. Thales provides limited off the shelf key import
facilities through use of the generatekey utility or KeySafe application (no key export facilities are
supplied).

Please contact Thales support if you wish to pursue key import (or export) operations further.

The Security World permits pkcs11 key names with an arbitrary number of characters. However, if
such a key is to be imported into an SQL Server database, the key name must be restricted to a
maximum of 32 characters.

Note: The name length restriction here is slightly different from when creating the key through a T-
SQL query, where the name length restriction is 31 characters maximum. See the section on
Symmetric keys on page 31 or Creating an asymmetric key on page 34.

Note: After an externally created key has been placed in the Security World, you must restart the
SQL Server before the key is imported for its presence to be recognized. See Appendix A: T-
SQL shortcuts and tips on page 67

To import an externally created symmetric key with an identity value:

nShield Microsoft SQL Server Integration Guide 36

Transparent Data Encryption - TDE

USE <Your_database_name>

CREATE SYMMETRIC KEY <Name_of_key_in_database> FROM PROVIDER

<Name_of_SQLEKM_provider>

WITH PROVIDER_KEY_NAME='<Name_of_Key_in_SQLEKM_provider>',

IDENTITY_VALUE='<Unique_GUID_generator_string>',

CREATION_DISPOSITION = CREATION_DISPOSITION = OPEN_EXISTING;

Where:

l Your_database_name is the name of the database for which you wish to provide encryption. See
Appendix A: T-SQL shortcuts and tips on page 67 for examples.

l Name_of_SQLEKM_provider is the name of the SQLKM provider you are using.
l Name_of_key_in_database is the name you wish to give the key in the database.
l Name_of_key_in_SQLEKM_provider is the name of the externally created key in the SQLEKM
provider. This must be no more than 32 characters maximum.

l Unique_GUID_generator_string is a unique string that will be used to generate the GUID.

Note: If the value of the <Unique_GUID_generator_string> is known to an attacker, this will help
them reproduce the symmetric key. Therefore it should always be kept secret and stored in a
secure place.We recommend the <Unique_GUID_generator_string> should be a minimum of
10 characters in length and have qualities similar to a strong passphrase. Check your
organisation’s security policy.

Only one key that has been created using a particular IDENTITY_VALUE can exist at the same time in
the same database.

To import an externally created asymmetric key

USE <Your_database_name>CREATE ASYMMETRIC KEY <Name_of_key_in_database> FROM PROVIDER<Name_

of_SQLEKM_provider>

WITH PROVIDER_KEY_NAME='<Name_of_Key_in_SQLEKM_provider>', CREATION_DISPOSITION = CREATION_

DISPOSITION = OPEN_EXISTING;

Parameters are the same as for the symmetric key. Note, for an externally created asymmetric key,
name length restriction of 32 characters maximum applies for <Name_of_key_in_SQLEKM_provider>

Transparent Data Encryption - TDE
Note: An example of configuring an AlwaysOn availability group with no shared disk for TDE

encryption is given in Appendix C: Using TDE within an AlwaysOn availability group on
page 73.

These examples assume that both the TestDatabase and TestTable as described in Appendix A: T-SQL
shortcuts and tips on page 67 have been created, and are not currently encrypted.

When TDE encryption has been correctly set up and switched on, the database it is protecting will
appear as normal to any user who has been granted suitable permissions to use the database. The
user does not require any SQLEKM provider credential to access or modify TDE protected data.

Note that:

nShield Microsoft SQL Server Integration Guide 37

Chapter 4: Configuring and using the SQLEKM provider

l If the credential protecting the TDE encryption key is OCS based, the operator cards must be
inserted in the HSM card reader for the TDE encryption to be set up and authorized.

l The person setting up or managing the TDE encryption keys must use the same OCS or softcard for
their login credential as used for the tdeCredential below (however, once the TDE encryption is
working, they are free to remove the credential from their login).

The TDE Database Encryption Key (TDEDEK) is a symmetric key that is used to perform the actual
encryption of the database. It is created by SQL Server and cannot be exported from the database
meaning that it cannot be created or directly protected by the SQLEKM provider. In order to protect
the TDEDEK within the database it may in turn be encrypted by a wrapping key. The wrapping key is
called the TDE Key Encryption Key (TDEKEK). In this case, the SQLEKM provider can create and
protect the TDE Key Encryption Key (TDEKEK).

Before running the following examples, you should create a backup copy of the unencrypted
database: see Backing up a database with SQL Server Management studio on page 58.
Alternatively, you may prefer to adapt the T-SQL query shown in Making a database backup on page
69. Save the backup as <Drive>:\<Backup_directory_path>\TestDatabase_TDE_Unencrypted.bak.

Note: If you are using a shared disk cluster as described earlier in this document, then to set up TDE
encryption, it should normally be sufficient to perform the following steps on the active node
only:

l Create TDEKEK
l Set up TDE login and credential
l Create TDEDEK and switch on encryption.

These steps are described in more detail below. If these steps are performed on the active node, then
the TDE set up should be automatically inherited when you failover to the other node. You should not
have to repeat the TDE set up on the second node. This does not apply if you are using an AlwaysOn
availability group with no shared disk. In this case, please see Appendix C: Using TDE within an
AlwaysOn availability group on page 73.

Creating a TDEKEK
Note: The TDEKEK must be protected under the same OCS or softcard as that used to create the

tdeCredential below.

To create a TDEKEK, or wrapping key, for database encryption:

USE master

CREATE ASYMMETRIC KEY dbAsymWrappingKey FROM PROVIDER <Name of provider>

WITH PROVIDER_KEY_NAME='ekmAsymWrappingKey', CREATION_DISPOSITION =

CREATE_NEW, ALGORITHM = RSA_2048;

GO

Where <Name of provider> is the name that is used to refer to the SQLEKM provider.

The TDEKEK is the only key you must create in the master database.

To check the TDEKEK, in SQL Server Management Studio navigate to Databases > System Databases
> Master > Security > Asymmetric Keys. If necessary, right-click and select Refresh.

nShield Microsoft SQL Server Integration Guide 38

Setting up the TDE login and credential

Setting up the TDE login and credential
1. In SQL Server Management Studio, navigate to Security > Credentials.
2. Right-click Credentials, then select New Credential .
3. Set Credential name to tdeCredential (for example).
4. Set Identity to <OCSname>, where <OCSname> is the name of the OCS or softcard. This must

be the same key protector as that used to protect the ekmAsymWrappingKey created above.
5. Set Password to <passphrase>, where <passphrase> matches the passphrase on the OCS or

softcard.
6. Set Use Encryption Provider to <Name of provider>, where <Name of provider> is the name of

the SQLEKM provider you are using. Click OK.
7. In SQL Server Management Studio, navigate to Security > Logins.
8. Right-click Logins, then select New Login.
9. Set Login name to tdeLogin (for example).
10. Ensure Mapped to asymmetric key is selected, then select dbAsymWrappingKey (the TDEKEK

created in the previous procedure) from the drop down list.
11. Ensure Map to Credential is selected, then select tdeCredential from the drop down list. Click

Add, then click OK.
12. In SQL Server Management Studio, check that the tdeCredential exists by navigating to Security

> Credentials. If necessary, right-click and select Refresh. You should see the credential name
listed.

13. In SQL Server Management Studio, check that the tdeLogin exists by navigating to Security >
Logins. If necessary, right-click and select Refresh. You should see the login name listed.

Creating the TDEDEK and switching on encryption
Only one TDEDEK per database can be used at a time.

To create the TDEDEK using the dbAsymWrappingKey (TDEKEK) created above for database encryption,
and enable TDE on the database (TestDatabase):

1. In SQL Server Management Studio, navigate to Databases > TestDatabase.
2. Right-click TestDatabase, then select Tasks > Manage Database Encryption...
3. Set Encryption Algorithm to the AES 256 algorithm.
4. Ensure that Use server asymmetric key is selected, then select dbAsymWrappingKeyfrom the drop

down list.
5. Ensure Set Database Encryption On is selected, then click OK.

After successfully setting up the TDE encryption, the person performing the set up no longer needs to
use the same OCS or softcard for their login credential as used for the tdeCredential.

Verifying by inspection that TDE has occurred on disk
Note that the inspection method will only work for data that can be backed up in the database (on
disk) as human-readable character strings.

To check the encryption state of the database, refer to the section How to check the TDE
encryption/decryption state of a database on page 41. If the TDE has been successful, then an
'Encrypted' state should be indicated.

Querying the TestTable or database contents will not indicate whether the table was encrypted on
disk, because it will be automatically decrypted when loaded into memory. TDE encryption on disk can

nShield Microsoft SQL Server Integration Guide 39

Chapter 4: Configuring and using the SQLEKM provider

be verified by inspecting backup copies of the TestDatabase from before and after the TDE
encryption.

After TDE encryption has been set up and checked to be functioning, make a backup copy of the
encrypted TestDatabase : see Backing up a database with SQL Server Management studio on page
58 for instructions.

You should now have the following unencrypted and encrypted backup copies of the TestDatabase:

l <Drive>:\<Backup_directory_path>\TestDatabase_TDE_Unencrypted.bak

l <Drive>:\<Backup_directory_path>\TestDatabase_TDE_Encrypted.bak

These backup files can be inspected using a simple text editor, provided you have appropriate access
permissions.

1. Open TestDatabase_TDE_Unencrypted.bak in a text editor and search for a known value. It should
be possible to find the plaintext FirstName or else LastName of anyone mentioned in the original
and unencrypted TestTable.

2. Open TestDatabase_TDE_Encrypted.bak in a text editor and search for the same value. It should
not be possible to find any plaintext names or other values in the encrypted file. The backup files
circumvent the automatic TDE decryption of the database, allowing direct inspection of the
contents as stored on disk. Although this inspection has been carried out on backup files, these
should contain information similar enough to the actual database disk contents to demonstrate
whether the TDE encryption is working on disk or not.

To replace the TDEKEK
1. Following the procedure above (see Creating a TDEKEK on page 38) create a new asymmetric

TDEKEK called dbAnotherAsymWrappingKey.
2. Create the new credential anotherTdeCredential.
3. Create a new TDE login called anotherTdeLogin. Map it to to dbAnotherAsymWrappingKey and the

new anotherTdeCredential.
4. In SQL Server Management Studio, navigate to Databases > TestDatabase.
5. Right-click TestDatabase, then select Tasks > Manage Database Encryption...
6. Select Re-Encrypt Database Encryption Key and Use server asymmetric. Select

dbAnotherAsymWrappingKey from the drop down list.
7. Ensure Regenerate Database Encryption Key is not selected.
8. Ensure Set Database Encryption On is selected, then click OK.

To replace the TDEDEK
1. In SQL Server Management Studio, navigate to Databases > TestDatabase.
2. Right-click TestDatabase, then select Tasks > Manage Database Encryption...
3. Ensure Re-Encrypt Database Encryption Key is not selected.
4. Ensure Regenerate Database Encryption Key is selected, then select AES 256 from the drop

down list.
5. Ensure Set Database Encryption On is selected, then click OK.

Switching off and removing TDE
See Uninstalling and Upgrading on page 64.

nShield Microsoft SQL Server Integration Guide 40

How to check the TDE encryption/decryption state of a database

How to check the TDE encryption/decryption state of a database
Note: The following encryption_state information applies to TDE encryption only.

You can use the following T-SQL queries to find the current encryption state of a database. This can be
particularly useful where large amounts of data have to be processed and you wish to check progress
before attempting any further operations on the database.

First, find the database ID from the database name by using the following query:

SELECT DB_ID('<Database name>') AS [Database ID];

GO

Where <Database name> is the name of the database you are interested in.

nShield Microsoft SQL Server Integration Guide 41

Chapter 4: Configuring and using the SQLEKM provider

List database encryption states by using the following query:

SELECT * FROM sys.dm_database_encryption_keys

The above query provides a table output that includes columns titled database_id and encryption_

state.

Find the database ID you are interested in and look at the corresponding value for the encryption
state.

Alternatively you can use the composite query:

SELECT db_name(database_id), encryption_state

FROM sys.dm_database_encryption_keys

Where database_id is the ID number of the database you are interested in.

Values of encryption_state are as follows:

Value of
encryption_

state

Meaning of value

0 Encryption disabled (or no encryption key)
1 Unencrypted or Decrypted
2 Encryption in progress
3 Encrypted
4 Key change in progress
5 Decryption in progress

6
Protection change in progress (The certificate or asymmetric key that is encrypting
the database encryption key is being changed.)

Cell Level Encryption (CLE)
In CLE separate data fields in the same table can be encrypted under different encryption keys. These
keys can be protected by different credentials. Unlike TDE protection, the user will need to obtain keys
from the SQLEKM provider, and must have the correct credential to authorize and load the encryption
key(s) for the specific encrypted data they wish to access. Non-encrypted data is not affected by this
and is visible to any authorized user.

Even after the encryption keys are loaded into the database, a user who is authorized to use the
database, but whose login is not associated with the correct credential, will not be able to use the
keys.

Cell-level encryption will only work on data stored in the database as VARBINARY type. You must
provide any necessary type conversions so that data is in VARBINARY form before encryption is
performed. Decryption will return the data to its original VARBINARY structure. It may then be
necessary to reconvert to its original type for viewing in human-readable form.

nShield Microsoft SQL Server Integration Guide 42

Encrypting and decrypting a single cell of data

Note: Database backup files that use the VARBINARY type are not human-readable. Therefore, the
previous inspection method, as used for TDE to directly check if data has been encrypted on
disk, cannot be used for cell-level encryption.

If you have not already created the following keys and made them available in your current database
copy, then create them now.

Symmetric key

USE TestDatabase

CREATE SYMMETRIC KEY dbAES256Key

FROM PROVIDER SQLEKM

WITH PROVIDER_KEY_NAME='ekmAES256Key',

IDENTITY_VALUE='Rg7n*9mnf29xl4',

CREATION_DISPOSITION = CREATE_NEW, ALGORITHM=AES_256;

GO

Asymmetric key

USE TestDatabase

CREATE ASYMMETRIC KEY dbRSA2048Key FROM PROVIDER SQLEKM

WITH PROVIDER_KEY_NAME='ekmRSA2048Key',

CREATION_DISPOSITION = CREATE_NEW, ALGORITHM=RSA_2048;

GO

Encrypting and decrypting a single cell of data
Before you start, make sure you have a fresh version of the TestTable that is unencrypted.

Note: In the example below, the encrypted and decrypted data is stored separately. Normally, the
original data would be overwritten with the processed data.

1. View TestTable by running the following query:

View Table:

SELECT TOP 10 [FirstName]

,[LastName]

,CAST(NationalIdNumber AS decimal(16,0)) AS [NationalIDNumber]

,(NationalIdNumber) AS VarBinNationalIdNumber

,[EncryptedNationalIdNumber]

,[DecryptedNationalIdNumber]

FROM [TestDatabase].[dbo].[TestTable]

You will see the column NationalIdNumber in its original decimal form, and the column
VarBinNationalIdNumber which shows the same number in its VARBINARY form (as stored in the
database), and in which it will be encrypted.
The columns EncryptedNationalIdNumber and DecryptedNationalIdNumber should contain NULL.

nShield Microsoft SQL Server Integration Guide 43

Chapter 4: Configuring and using the SQLEKM provider

2. To encrypt a single cell in the TestTable, run the following query:

Encrypt a cell using the symmetric key:

USE TestDatabase

UPDATE TestTable

SET EncryptedNationalIDNumber = EncryptByKey(Key_GUID('dbAES256Key'),

NationalIDNumber)

WHERE FirstName = 'Kate' AND LastName = 'Austin';

GO

This query encrypts the NationalIdNumber for Kate Austin using the symmetric encryption key
dbAES256Key, and stores the result in the column EncryptedNationalIDNumber.

3. Run the previous View Table query. The EncryptedNationalIdNumber will now contain the
encrypted value against the name Kate Austin.

4. Run the following query to decrypt the information:

Decrypt a cell using the symmetric key:

USE TestDatabase

UPDATE TestTable

SET DecryptedNationalIDNumber = DecryptByKey(EncryptedNationalIDNumber)

WHERE FirstName = 'Kate' AND LastName = 'Austin';

GO

5. Run the previous View Table query. The DecryptedNationalIdNumber will now contain the
decrypted value against the name Kate Austin.
Ensure that this value matches the corresponding value in the VarBinNationalIdNumber column. If
the values match then the decryption worked successfully.

6. To view the decrypted value in its original decimal form, run the following query:

View encrypted data:

SELECT TOP 10 [FirstName]

,[LastName]

,CAST(NationalIdNumber AS decimal(16,0)) AS [NationalIDNumber]

,(NationalIdNumber) AS VarBinNationalIdNumber

,[EncryptedNationalIdNumber]

,CAST(DecryptedNationalIdNumber AS decimal(16,0)) AS

[DecryptedNationalIdNumber]

FROM [TestDatabase].[dbo].[TestTable]

nShield Microsoft SQL Server Integration Guide 44

Encrypting and decrypting columns of data

7. Reset the EncryptedNationalIdNumber and DecryptedNationalIdNumber columns by running the
following query:

Reset table:

USE TestDatabase

UPDATE TestTable

SET EncryptedNationalIDNumber = NULL, DecryptedNationalIDNumber = NULL;

GO

8. Repeat steps 1-7, using the asymmetric encryption key dbRSA2048Key.

Encrypt a cell using the asymmetric key

USE TestDatabase

UPDATE TestTable

SET EncryptedNationalIDNumber =

ENCRYPTBYASYMKEY(ASYMKEY_ID('dbRSA2048Key'), NationalIDNumber)

WHERE FirstName = 'Kate' AND LastName = 'Austin';

GO

Decrypt a cell using the asymmetric key:

USE TestDatabase

UPDATE TestTable

SET DecryptedNationalIDNumber =

DECRYPTBYASYMKEY(ASYMKEY_ID('dbRSA2048Key'), EncryptedNationalIDNumber)

WHERE FirstName = 'Kate' AND LastName = 'Austin';

GO

Encrypting and decrypting columns of data
Before you start, make sure you have a fresh version of the TestTable that is unencrypted.

Note: In the example below, the encrypted and decrypted data is stored separately. Normally, the
original data would be overwritten with the processed data.

Perform the same steps as shown in the section Encrypting and decrypting a single cell of data on
page 43, but in this case where encryption or decryption occurs, replace with the following queries.

Encrypt an existing column of data using the symmetric key:

USE TestDatabase

UPDATE TestTable

SET EncryptedNationalIDNumber = EncryptByKey(Key_GUID('dbAES256Key'),

NationalIDNumber);

GO

nShield Microsoft SQL Server Integration Guide 45

Chapter 4: Configuring and using the SQLEKM provider

Decrypt an existing column of data using the symmetric key:

USE TestDatabase

UPDATE TestTable

SET DecryptedNationalIDNumber = DecryptByKey(EncryptedNationalIDNumber);

GO

Encrypt an existing column of data using the asymmetric key:

USE TestDatabase

UPDATE TestTable

SET EncryptedNationalIDNumber = ENCRYPTBYASYMKEY(ASYMKEY_ID('dbRSA2048Key'),

NationalIDNumber);

GO

Decrypt an existing column of data using the asymmetric key:

USE TestDatabase

UPDATE TestTable

SET DecryptedNationalIDNumber = DECRYPTBYASYMKEY(ASYMKEY_ID('dbRSA2048Key'),

EncryptedNationalIDNumber);

GO

Creating a new table and inserting cells of encrypted data
The following assumes you have available TestDatabase and the keys dbAES256Key, dbRSA2048Key as
created previously.

Create a table with an encrypted field:

To create a new database table Customers, where individual cells of data held in the third column
(CardNumber) will be encrypted, execute the following query:

USE TestDatabase

GO

CREATE TABLE Customers (FirstName varchar(MAX), SecondName varchar(MAX), CardNumber

varbinary(MAX));

Insert encrypted data with the symmetric key:

The following query allows the user to enter the sensitive data (CardNumber) via the keyboard and then
immediately encrypt using a symmetric key, sending the CardNumber directly into memory (and
database) in an encrypted state.

nShield Microsoft SQL Server Integration Guide 46

Creating a new table and inserting cells of encrypted data

USE TestDatabase

INSERT INTO Customers (FirstName, SecondName, CardNumber)

VALUES ('Joe', 'Bloggs', ENCRYPTBYKEY(KEY_GUID('dbAES256Key'),

CAST('<16 digit card number>' AS VARBINARY)));

INSERT INTO Customers (FirstName, SecondName, CardNumber)

VALUES ('Iain', 'Hood', ENCRYPTBYKEY(KEY_GUID('dbAES256Key'),

CAST('<16 digit card number>' AS VARBINARY)));

INSERT INTO Customers (FirstName, SecondName, CardNumber)

VALUES ('Joe', 'Smith', ENCRYPTBYKEY(KEY_GUID('dbAES256Key'),

CAST('<16 digit card number>' AS VARBINARY)));

GO

where <16 digit card number> is a 16-digit payment card number to be encrypted.

View data encrypted with the symmetric key in plain text:

The following query allows the user to view, in plain text on screen, the sensitive data (CardNumber) for
customers named 'Joe'. The data remains encrypted in memory and (database).

USE TestDatabase

SELECT [FirstName], [SecondName],

CAST(DecryptByKey(CardNumber) AS varchar) AS 'Decrypted card number'

FROM Customers WHERE [FirstName] LIKE ('%Joe%');

GO

If an asymmetric key (dbRSA2048Key) is used, similar actions can be achieved using the following
queries.

Insert encrypted data with the asymmetric key:

USE TestDatabase

INSERT INTO Customers (FirstName, SecondName, CardNumber)

VALUES ('Joe', 'Connor', ENCRYPTBYASYMKEY(ASYMKEY_ID('dbRSA2048Key'),

CAST('<16 digit card number>' AS VARBINARY)));

INSERT INTO Customers (FirstName, SecondName, CardNumber)

VALUES ('Richard', 'Taylor', ENCRYPTBYASYMKEY(ASYMKEY_ID('dbRSA2048Key'),

CAST('<16 digit card number>' AS VARBINARY)));

INSERT INTO Customers (FirstName, SecondName, CardNumber)

VALUES ('Joe', 'Croft', ENCRYPTBYASYMKEY(ASYMKEY_ID('dbRSA2048Key'),

CAST('<16 digit card number>' AS VARBINARY)));

GO

where <16 digit card number> is a 16-digit payment card number to be encrypted.

nShield Microsoft SQL Server Integration Guide 47

Chapter 4: Configuring and using the SQLEKM provider

View data encrypted with the asymmetric key in plain text:

USE TestDatabase

SELECT [FirstName], [SecondName],

CAST(DECRYPTBYASYMKEY(ASYMKEY_ID('dbRSA2048Key'),CardNumber) AS varchar) AS 'Decrypted card

number'

FROM Customers WHERE [FirstName] LIKE ('%Joe%');

GO

Note: It is possible to encrypt separate table cells using different keys. When decrypting with a
particular key, it should not be possible to see data that was encrypted using another key.

Viewing tables

Using SQL Server Management Studio

To check that data in a table was either encrypted or decrypted successfully, complete the following
steps:

1. Open SQL Server Management Studio on the Management Studio.
2. Go to Databases > TestDatabase > Tables.
3. Right-click the table name and select Select Top 1000 Rows to view the encrypted or decrypted

data.

Using SQL Query

To check that data in a table was either encrypted or decrypted successfully, execute the following
SQL query:

Use TestDatabase

SELECT * FROM <table_name>

Checking keys
The following queries show how you can check the attributes of keys in your database and SQLEKM
provider. These methods are suitable for small numbers of keys. For large numbers of keys, seek
automated methods.

l To view the symmetric keys in a database:

Use TestDatabase

SELECT * FROM sys.symmetric_keys

nShield Microsoft SQL Server Integration Guide 48

Checking keys

l To view the asymmetric keys in a database:

Use TestDatabase

SELECT * FROM sys.asymmetric_keys

l To view the keys in the cryptographic provider:

DECLARE @ProviderId int;

SET @ProviderId = (SELECT TOP(1) provider_id

FROM sys.dm_cryptographic_provider_properties

WHERE friendly_name LIKE '<Friendly_name_of_provider>');

SELECT * FROM sys.dm_cryptographic_provider_keys(@ProviderId);

GO

Where <Friendly_name_of_provider> can be found as shown in the section Checking the
configuration on page 28 for the cryptographic provider you are using.

l To correlate symmetric keys between the database and cryptographic provider:

DECLARE @ProviderId int;

SET @ProviderId = (SELECT TOP(1) provider_id FROM

sys.dm_cryptographic_provider_properties

WHERE friendly_name LIKE '<Friendly_name_of_provider>');

SELECT * FROM sys.dm_cryptographic_provider_keys(@ProviderId)

FULL OUTER JOIN sys.symmetric_keys

ON sys.symmetric_keys.key_thumbprint =

sys.dm_cryptographic_provider_keys.key_thumbprint

WHERE sys.dm_cryptographic_provider_keys.key_type = 'SYMMETRIC KEY'

GO

where <Friendly_name_of_provider> can be found as shown in the section Checking the
configuration on page 28 for the cryptographic provider you are using.

l To correlate asymmetric keys between the database and cryptographic provider:

DECLARE @ProviderId int;

SET @ProviderId = (SELECT TOP(1) provider_id FROM sys.dm_cryptographic_provider_

properties

WHERE friendly_name LIKE '<Friendly_name_of_provider>');

SELECT * FROM sys.dm_cryptographic_provider_keys(@ProviderId)

FULL OUTER JOIN sys.asymmetric_keys

ON sys.asymmetric_keys.thumbprint = sys.dm_cryptographic_provider_keys.key_thumbprint

WHERE sys.dm_cryptographic_provider_keys.key_type = 'ASYMMETRIC KEY'

GO

where <Friendly_name_of_provider> can be found as shown in the section Checking the
configuration on page 28 for the cryptographic provider you are using.

nShield Microsoft SQL Server Integration Guide 49

Chapter 4: Configuring and using the SQLEKM provider

l To correlate all keys (symmetric and asymmetric) between the database and cryptographic
provider:

DECLARE @ProviderId int;

SET @ProviderId = (SELECT TOP(1) provider_id FROM

sys.dm_cryptographic_provider_properties

WHERE friendly_name LIKE '<Friendly_name_of_provider>');

SELECT * FROM sys.dm_cryptographic_provider_keys(@ProviderId)

FULL OUTER JOIN sys.symmetric_keys

ON sys.symmetric_keys.key_thumbprint =

sys.dm_cryptographic_provider_keys.key_thumbprint

FULL OUTER JOIN sys.asymmetric_keys

ON sys.asymmetric_keys.thumbprint =

sys.dm_cryptographic_provider_keys.key_thumbprint

GO

where <Friendly_name_of_provider> can be found as shown in the section Checking the
configuration on page 28 for the cryptographic provider you are using.

Cross-referencing keys between the SQLEKM provider and Security World

The same key may exist under a different name in the SQLEKM provider and database (see previous
section), but will not be recognizable at all by direct inspection of keys in the Security World (%NFAST_
KMDATA%\local, or %NFAST_KMLOCAL%).

The example below allows you to cross-reference the same key between the SQLEKM provider and
Security World. The key can in turn be cross-referenced to the same key in the database, as shown in
previous examples.

Note: If you are running a failover cluster you will need to run these procedures on the active server.

1. In a command window, run the Thales utility:

cklist

Note: You may have to enter the appropriate OCS or softcard passphrase.
2. In the command window, scroll through the keys displayed, and for each key observe its value of

CKA_LABEL. This matches that key's name in the cryptographic provider, as specified by the user
at key generation.

The CKA_NFKM_ID field has two parts:

l The prefix part of this is the identity of the protector (OCS or smartcard).
l The suffix part of this is the identity of the same key in the Security World.

Note: Under the cklist utility, each asymmetric key will appear as a separate public part and private
part. The value of CKA_NFKM_ID should be identical for both parts.

nShield Microsoft SQL Server Integration Guide 50

Checking keys

Example:

In cklist

CKA_NFKM_ID =

"uc8930b1640cceca18dab54f6d304564d56a5263ebd9f590f9f9b40dd6d8effa29b640789f3a33f6a0"

Matches

key_pkcs11_

uc8930b1640cceca18dab54f6d304564d56a5263ebd9f590f9f9b40dd6d8effa29b640789f3a33f6a0

In the Security World.

Detailed information about individual keys in the Security World

You can obtain detailed information about individual keys in the Security World by using the Thales
utility nfkminfo –k <APPNAM> <IDENT>.

To obtain detailed information about individual keys in the Security World; on a client server, first run
the utility as nfkminfo –k. This will provide a list of keys under the headings AppName and Ident similar
to the example below:

>nfkminfo -k

Key list - 6 keys

AppName pkcs11 Ident uc04fd373a8c273ff31fa2b715c82fafd62d9b0ebc-

4a937bcb08c4c10ddc10cb2e211e225f30076467

AppName pkcs11 Ident uc2d7bb2b4881ff0c2d6cdfb1d2d96495b836c99c3-

39782a17496647ac4bae4de4a2c73fc4114a0e11

AppName pkcs11 Ident uc2d7bb2b4881ff0c2d6cdfb1d2d96495b836c99c3-

e5c8491ea44f91a8bea1f4bdd71b2f7bd5a2bfd3

AppName pkcs11 Ident uc3ccec7b7a60fd737d3258561b62e8817a86bf0db-

20c01df1bff1e5233106be3be904885cb2f19754

AppName pkcs11 Ident uc5b92244580da11dd351a6c4538cc6515394eb8b2-

98049d55e508bc0014350aea7596d91926cf778c

AppName pkcs11 Ident uca6c59a0034c2c4762f70aaeeff0ce69ce620d863-

a05a30aa91506b51ffc8f1f52d52b521793a772f

The ident should match the same key as seen in the Security World (%NFAST_KMDATA%\local, or
%NFAST_KMLOCAL%), or else the CKA_NFKM_ID as listed by the cklist utility.

nShield Microsoft SQL Server Integration Guide 51

Chapter 4: Configuring and using the SQLEKM provider

Use the AppName and Ident information to obtain information about a specific key as shown in the
example below:

>nfkminfo -k pkcs11 uc2d7bb2b4881ff0c2d6cdfb1d2d96495b836c99c3-

39782a17496647ac4bae4de4a2c73fc4114a0e11

Key AppName pkcs11 Ident uc2d7bb2b4881ff0c2d6cdfb1d2d96495b836c99c3-

39782a17496647ac4bae4de4a2c73fc4114a0e11

BlobKA length 1168

BlobPubKA length 516

BlobRecoveryKA length 1304

name "ekmWrappingKey"

hash 0c7883d6b3cbd57ea3596f1efe2afe894317314e

recovery Enabled

protection CardSet

other flags PublicKey !SEEAppKey !NVMemBlob +0x0

cardset 2d7bb2b4881ff0c2d6cdfb1d2d96495b836c99c3

gentime 2016-02-23 12:38:02

SEE integrity key NONE

...etc...

Note: What is called the key_thumbprint when viewing key information through T-SQL queries, is the
same as the hash when viewed using the nfkminfo utility, or the CKA_NFKM_HASH when using the
cklist utility.

nShield Microsoft SQL Server Integration Guide 52

Changes in the SQLEKM provider require SQL Server restart

Changes in the SQLEKM provider require SQL Server restart
If changes are made solely to the SQLEKM provider or associated Security World, there is no
automatic mechanism to transmit these changes to the SQL Server. In this case, after such changes
have been made, the SQL Server must be restarted in order to recognize them.

Examples of changes within the SQLEKM provider or Security World that will necessitate an SQL
Server restart are:

l Key creation or deletion
l Key import
l OCS creation or deletion
l Softcard creation or deletion
l Passphrase changes
l Insertion or removal of OCS cards from card reader (except where card presence is normally
required for ongoing key authorisation)

l Addition or removal of modules
l Configuration changes affecting the Security World.

Where keys are created or deleted through SQL Server queries, a restart should not normally be
required. You will require administrator rights to restart the SQL Server.

To restart the SQL Server:

1. In the SQL Server Management Studio, right-click on the server name and select Restart

Or:

2. On a command line, enter the following commands in succession:

net stop mssqlserver

net start mssqlserver

Note: System environment changes that affect SQL Server may also require a restart in order to be
recognized.

nShield Microsoft SQL Server Integration Guide 53

Chapter 5: Security World Data and back-up/restore

Chapter 5: Security World Data and
back-up/restore
Operational data used by the Security World software is all the data held in the directory(s) referenced
by the following environment variables:

l %NFAST_KMDATA%
l %NFAST_KMLOCAL% (typically only employed if a remote host is being used).

The %NFAST_KMDATA% variable will cover the following sub-directories under the Key Management

Data directory (typically) on a local host:

l config

l features

l hardserver.d

l local

l tmp

l warrants (if using V12 software).

The %NFAST_KMLOCAL% variable will cover the local sub-directory under the Key Management Data

directory (typically) on a remote host.

If you are using both the above variables at the same time, then the local sub-directory under the
%NFAST_KMDATA% variable is superseded by the local sub-directory under the %NFAST_
KMLOCAL% variable, which holds the relevant local data in this case.

The local sub-directory may also be called a Security World folder and holds the Security World data.
This includes the cryptographic data files essential for the operation of the Security World.
Cryptographic files in the local sub-directory may update or change regularly and cannot be replaced
if lost. These files should be the focus of back-up.

The sub-directories other than local contain Security World configuration data. Once a configuration
is established it is unlikely to change frequently. In any case, it is possible for the configuration data to
be regenerated or replaced. Its loss may impede rapid restoration of a failed system, but the system
should not be irrecoverable. Configuration files are not inherently encrypted. Information contained in
them may give an adversary some knowledge of your configuration, but will not directly compromise
the security of your cryptographic material. If you wish to keep configuration files secret you must do
so using external encryption facilities.

Hence, a practical back-up strategy is to save an initial copy of the configuration sub-directories, and
thereafter only update this back-up if the configuration is known to have changed. Regular or
scheduled back-ups can then be confined to the local sub-directory contents.

All files that are held in the local folder are encrypted. If lost or stolen, they will be useless to anyone
who does not possess the correct authorizing mechanisms to use them, such as ACS cards, OCS
cards, HSM, associated passwords and Thales Security World software. Therefore back-up of the
local data may simply consist of making a copy of it, and placing the copy in a safe location. No
further encryption is necessary.

nShield Microsoft SQL Server Integration Guide 54

Chapter 5: Security World Data and back-up/restore

Further information about backing up the Security World can be found in the User Guide for your
nShield HSM.

The local directory
The local sub-directory, or Security World folder, contains the files (or Security World data) needed to
perform the cryptographic functions of the Security World. When performing a back-up of this data,
you must include all the data in the local sub-directory, as described in the previous section.

Your Security World data is valuable. Access to the Security World folder should only be allowed for
authorized users. Furthermore, it is possible to control usage permissions for individual cryptographic
files to particular users only, in order to fine-grain authorized access to cryptographic operations
where those files are used. However, check with your organisation’s security policies before you do
this.

If you need to set permissions to control access to individual cryptographic files, then you will need to
know something about those files, as follows.

The following file is the minimum necessary data to initiate a functional Security World:

l world – holds information relating to the Security World’s type, its other characteristics, and ACS
cards.

The world file must be generated by the Security World software and is loaded onto the target HSM(s)
upon creation. Otherwise, a pre-existing world file must be loaded onto the target HSM(s) using its
ACS card(s). Please refer to the User Guide for your HSM for more information about creating or
loading a Security World.

Unless the world file is loaded onto a usable HSM, no other cryptographic files associated with it in the
local folder will function.

Other files in the local directory that may be associated with the world file are as follows. None of the
these files can be created unless a world file already exists, and once they exist will only work with the
world file they were created under.

l cards_<hash> - holds information about an OCS cardset where <hash> is a number unique to the
cardset. The same <hash> will be used by all individual card files that are members of the same
cardset.

l card_<hash>_<n> - holds information about an individual OCS card where <hash> is the OCS
cardset hash, and <n> is the individual card’s creation sequence number.

l softcard_<hash> - holds information about a softcard where <hash> is a number unique to the
softcard.

l key_pkcs11_<hash> – holds information about a pkcs11 encryption key where <hash> is a number
unique to the key. The SQL Server EKM API only works with pkcs11 keys.

Please refer to the User Guide for your HSM for more information about creating OCS or softcards.

All the above files are inherently encrypted and are useless to anyone who does not possess the
correct authorizing mechanisms. Be very careful about deleting any of the above files from the local

folder. Unless you have a back-up, any such file that is deleted from the local folder is lost for good.

nShield Microsoft SQL Server Integration Guide 55

Disaster recovery

The local subdirectory may also contain the following file(s), but which may not be needed if a different
hardware configuration is used, and also should not be difficult to replace.

l module_<ESN> – where <ESN> is a module’s Electronic Serial Number. Holds information about a
HSM that is configured to use the Security World.

Together, the world file and the (above) files created under it comprise a Security World’s
cryptographic data. These files should always be kept exclusively together in their owning Security
World folder. The contents of the Security World folder distinguish between different Security Worlds.
Files from different Security World folders should never be mixed and will not work in the wrong
Security World in any case (although keys can be imported using correct procedures).

Always make sure you have an up to date back-up of your Security World data that includes all
files in the local folder.

Note: You can switch between different existing Security Worlds while retaining the same system
configuration by renaming the desired Security World folder to local. You must then load the
Security World by using its associated ACS cards.

Disaster recovery
It should be part of your corporate disaster recovery policy to perform regular back-ups of both your
database and associated Security World such that the back-ups remain up to date and synchronized
with each other. For further information about backing up the Security World, see Backing up on
page 57.

The back-up strategies you employ and how you implement them will depend on your particular
corporate policies and requirements, and the specifics of the type of configuration you are using. This
guide cannot cover all the potential options and complexities, and will only provide broad advice on
back-up and restoration using the supported forms of database encryption. Whichever back-up or
restoration option you use, make sure you have safely tested it before putting it into practice.

When a Security World is created, an ACS cardset (one only) is created at the same time. You should
choose a quorum of ACS cards in accordance with your corporate security policy. The total number of
cards in the ACS cardset should include surplus cards in case of failure or loss of an ACS card. The
ACS cards authorize loading of the Security World, and some management operations on its OCS
cardsets and softcards (please see the User Guide for your HSM). You should always store your ACS
cards in a secure location. Normally, you should not need to use the ACS cardset for everyday use
with your SQLEKM provider. However, you may need to use it if you are restoring a Security World
that was previously archived and must be reloaded onto an nShield HSM.

An OCS cardset is used to authorize use of encryption keys that are assigned to and protected by that
OCS cardset. Softcards perform a similar function. There can be more than one OCS cardset and/or
softcard. However, a softcard exists as a single entity and has only passphrase protection. Generally,
an OCS cardset is considered more secure than a softcard because it can be created with a quorum of
multiple cards, physical presence of the cards is required, and each card can be supplied with its own
passphrase. However, these advantages may be somewhat constrained when used with the SQL
Server credential, which entails a 1/N quorum and identical passphrase for every card in the OCS
cardset for the cards to be used interchangeably with the same credential.

nShield Microsoft SQL Server Integration Guide 56

Chapter 5: Security World Data and back-up/restore

The total number of cards in the OCS cardset should include surplus cards in case of failure or loss of
an OCS card. Some of the cards should always be kept in a secure location, and access to OCS cards
in everyday use should be restricted to authorized persons.

The presence of a protecting OCS card, or softcard, will be required when performing back-up or
restoration operations for a TDE encrypted database. For cell encryption keys, the presence of a
protecting OCS card or softcard should only be required for any preliminary encryption or decryption
operations before back-up, but should not be required for back-up or restoration itself.

Encryption keys, OCS card data and softcard data, that are protected by the SQLEKM provider are
stored in its Security World. Note, if using TDE encryption, this does not apply to the database
encryption key (TDEDEK) which is stored as an integral part of the related database. However, it does
apply to the TDE wrapping key (TDEKEK) which is used to protect the TDEDEK.

Note that the Security World will hold the encryption keys for ALL current databases it is being
employed with. That may include encryption keys for databases you are not specifically backing up.
Note also that it may hold encryption keys for the master database that are common to more than one
user database. You may find it convenient that you need only one Security World back-up to cover
several databases. Otherwise you will need to pursue a policy of one Security World for one
database.

Backing up
Before backing up a database and corresponding Security World, make sure you are using versions
of both that are synchronized to each other. That is, the Security World holds all the up to date and
correct encryption keys that are being used by the matching database.

When performing back-ups, it is advised to back-up the database first, before backing up the Security
World.

Take care you do not delete any encryption keys from the SQLEKM provider that you will later need for
restoration. Check if you have keys with duplicate names in the SQLEKM provider. Although
technically possible, permitting duplicate names in the SQLEKM provider is not advised as it leads to
confusion and possible operational errors. To avoid any future problems with your back-up, if you have
keys with duplicate names, consider methods to eliminate the duplicate names, such as re-encrypting
data with differently named key(s), before back-up.

If you are backing up a database that uses cell encryption keys, you should ensure that all sensitive
data is encrypted first before back-up commences. Before back-up, remove the cell encryption key
references from the database itself. If key references are not removed from the database, they will be
stored within the database back-up. This should be avoided from a security point of view.

If you are backing up a database that is both cell and TDE encrypted, perform the above instructions
for the cell encryption keys before continuing with the following instructions for backing up a TDE
encrypted database.

When backing up a TDE encrypted database, you must have the TDE credential (including OCS card
or softcard) and database wrapping key (TDEKEK) present.

nShield Microsoft SQL Server Integration Guide 57

Backing up a database with SQL Server Management studio

With TDE encryption, the database encryption key (TDEDEK) is an integral part of the related
database. It is stored within the back-up, and not in the Security World. Note however, that the
TDEDEK is protected by the TDEKEK which is held in the Security World.

If using a shared disk cluster, the exact same database and TDEDEK is being used irrespective of the
currently active node. Hence it should not matter which node is currently active when a back-up is
made. Similarly, if an availability group is being used with primary and secondary replicas (and no
shared disk), the secondary replicas should use the same TDEDEK as the primary, and it should not
matter which replica (or node) is being used during a back-up.

Once you have prepared the database as described above, you may back-up the database in a similar
manner to an unencrypted database. If you are backing up a TDE encrypted database, it will be
backed up while remaining in its encrypted form, which is advantageous from a security point of view.
After you have backed up the database, you can then proceed to back-up the associated Security
World folder.

Refer to Chapter 5: Security World Data and back-up/restore on page 54 for information about
locating the Security World data, and the files you need to back-up.

The Security World data is inherently encrypted and does not require any further encryption operation
to protect it. It can only be used by someone who has access to a quorum of the correct ACS cards,
OCS cards, softcards, their passphrases, an nShield HSM and Thales Security World Software.
Therefore back-up should simply consist of making a copy of the Security World file and placing the
copy in a safe location.

You should not store back-up copies of the Security World in the same physical location as its
corresponding database. You must keep a record of which database and which Security World back-
ups correspond to each other, and where they are located.

You should also securely store and keep a record of ACS and OCS cards associated with each
Security World, as necessary to restore the keys used by the database. If you are using many ACS or
OCS cards, or many symmetric keys with an IDENTITY_VALUE attribute, you may consider securely
documenting the associated passwords. Also, the more encryption keys in your Security World, the
more necessary it becomes to record which keys are used to encrypt which data.

If you are backing up as part of a long term archive, and you are storing ACS and OCS cards for
more than one Security World, make sure you have some way of clearly identifying which cards
belong to which Security World.

Note: Your backup will include data content of your selected database, but may not include backups
of SQL Server logins or credentials. Please refer to Microsoft SQL Server documentation for
details of how to back these up. Otherwise, when later restoring the database, you may have
to recreate suitable SQL Server logins and credentials, although this should not be a difficult
task.

Backing up a database with SQL Server Management studio
Note: This provides a basic example of how to backup a database. Please refer to Microsoft SQL

Server documentation for a more thorough treatment of backup (and restoration) of a
database.

nShield Microsoft SQL Server Integration Guide 58

Chapter 5: Security World Data and back-up/restore

1. In SQL Server Management Studio, navigate to Management.
2. Right-click on Management and select Back up.
3. Set Database_Name using the pull down menu.
4. Set Backup type as Full using the pull down menu.
5. Set Backup component button as Database.
6. Under Destination select Disk.

Note: Click Remove to set aside any previously named back-up file(s) that you do not want to
keep.
Click Add and provide a suitable path and name for the back up file, e.g.
<Drive>:\<Backup_directory_path>\TestDatabase_TDE_[date].bak (if you are using a
database failover cluster, this path may be relative to the shared disk). Press OK to accept
the file path and name. Press OK again.

7. When the back-up is complete, the message The backup of database 'TestDatabase' completed

successfully is displayed. Press OK.
8. Make sure you can access the back-up file at the location given above.

Note: If the database back-up fails with a message indicating that the transaction log is not up to
date, repeat the above steps, but for step 4 select Backup type as Transaction Log. In step 6,
provide a suitable Log file name. After this completes successfully, you should be able to
perform the database back-up.

Restoring from a back-up
If you wish to restore from back-ups, make sure you are using corresponding database and Security
World copies. Restore the Security World before restoring the corresponding database.

Essentially, restoring a Security World simply means restoring a back-up copy of the Security World
folder. If the configuration has not changed, you need only restore the contents of the local folder. If
the Security World you are restoring is not already loaded onto your HSM, you will then have to use
its ACS cards and associated passphrases to load it

Before restoring a Security World from a back-up, decide what you wish to do with any existing
Security World that you may have in your %NFAST_KMDATA% or %NFAST_KMLOCAL% directory. If
you wish to keep it, you may need to perform a back-up on it before proceeding.

If you are restoring a previous version of a Security World that still exists on your nShield HSM, then
as a precaution in case of failure, make a local copy of the current Security World contents before
proceeding. You may then either merge or replace the existing Security World with your back-up
copy.

If you are restoring an archived Security World that no longer exists on your nShield HSM, you will
need to use its ACS cards with passphrases in order to reload it. Refer to your nShield HSM User
Guide for more information on loading an existing Security World.

Make sure that the Security World is restored on all nShield HSMs within your configuration. Once
you have restored the Security World to the SQLEKM provider, restart the SQL Server on the active
or primary node you are using in order to pick up the changes. After restoring the Security World
you can then go on to restore the corresponding database.

Restore the database, including a TDE encrypted database, in a similar manner to an unencrypted
database.

nShield Microsoft SQL Server Integration Guide 59

Restoring from a back-up

Once the database is restored, you will require suitable SQL Server logins and associated credentials
to use the database and retrieve keys from the Security World. If these are not already present, or you
have not restored them by some independent means, you will need to regenerate them. In this case,
to access the encryption keys you will need to create new credential(s) that incorporate the OCS
cardset(s), or softcard(s), that protect the key(s) you wish to use. Once you have created a credential
you must associate it with an authorized login.

Note: You can use the rocs facility to find out which keys in the Security World belong to which
OCS cardset or softcard. You can then recreate SQL Server credentials accordingly. See the
User Guide for your HSM for more details about the rocs utility. See Creating a credential on
page 26 for details of how to create a credential.

For cell encryption keys, once the database is restored with valid credentials and associated login, you
can restore the cell encryption keys from the SQLEKM provider by reimporting them. But there is no
need to do this until you need the keys. You must be using the correct credentials for the particular
keys you wish to reimport, see Re-importing symmetric keys on page 33 or Re-importing an
asymmetric key on page 35.

If you are restoring a database that uses both cell encryption and TDE encryption, then the database
must first be restored for TDE encryption as shown below, before reimporting the cell encryption keys.

The following description focusses on restoring a TDE encrypted database. It assumes the database
wrapping key (TDEKEK) has not been reimported into the master database.

Before proceeding to restore a TDE encrypted database:

l If you are attempting to restore a TDE encrypted database that is protected by an OCS based
credential, insert the correct OCS card(s) into the nShield HSM card reader(s).

l The user will need to use a personal login that is associated through a credential with the same
OCS or softcard that is protecting the TDEKEK for the database to be restored. If necessary, create
a credential that uses this OCS or softcard, and associate it with the user login

If using a shared disk cluster, you should only need to perform the following steps on the active node.
If using an availability group (with no shared disk) you will need to perform the following steps on the
primary and all secondary replicas.

l The database wrapping key (TDEKEK) should already exist in the Security World and you will need
to reimport it into your master database using the ‘OPEN_EXISTING’ clause as in the example
below.

USE master

CREATE ASYMMETRIC KEY dbAsymWrappingKey

FROM PROVIDER <Name of provider>

WITH PROVIDER_KEY_NAME='ekmAsymWrappingKey ',

CREATION_DISPOSITION = OPEN_EXISTING;

GO

nShield Microsoft SQL Server Integration Guide 60

Chapter 5: Security World Data and back-up/restore

l You will need to recreate the TDE login and credential that was originally used with the database.

--OCS card example

USE master

CREATE LOGIN tdeLogin FROM ASYMMETRIC KEY dbAsymWrappingKey;

CREATE CREDENTIAL tdeCredential WITH IDENTITY = 'OCS1', SECRET = '+453X7V]MR'

FOR CRYPTOGRAPHIC PROVIDER SQLEKM;

ALTER LOGIN tdeLogin ADD CREDENTIAL tdeCredential;

GO

--Alternative Softcard example.

Use master

CREATE LOGIN tdeLogin FROM ASYMMETRIC KEY dbWrappingKey;

CREATE CREDENTIAL tdeCredential WITH IDENTITY = 'scard1', SECRET = '0O*dG0ffz2'

FOR CRYPTOGRAPHIC PROVIDER SQLEKM;

ALTER LOGIN tdeLogin ADD CREDENTIAL tdeCredential;

l If you are attempting to restore a TDE encrypted database that is protected by an OCS based
credential, insert the correct OCS card(s) into the nShield HSM card reader(s).

l The user will need to use a personal login that is associated through a credential with the same
OCS or softcard that is protecting the TDEKEK for the database to be restored. If necessary, create
a credential that uses this OCS or softcard, and associate it with the user login.

l After setting up the TDEKEK and credentials above, you may now restore the TDE encrypted
database in a similar manner to an unencrypted database. If the database was backed up in an
encrypted state, it should be restored in an encrypted state, and you should not need to switch on
encryption.

nShield Microsoft SQL Server Integration Guide 61

Chapter 6: Troubleshooting

Chapter 6: Troubleshooting
(Relating to Thales SQLEKM provider only).

Problem / issue Suggested diagnosis / solution

When you attempt to register the SQLEKM
provider, an error message in Microsoft SQL
Server Management Studio similar to the
following is returned -

Msg 33029, Level 16, State 1, Line 1 Cannot

initialize cryptographic provider. Provider

error code: 1. (Failure - Consult EKM

Provider for details)

This usually indicates a problem with the pkcs11
configuration. Check if:
- %NFAST_HOME%\toolkits\pkcs11 is on the system
PATH, and before installation of the SQLEKM
provider.
- The pkcs11 path is corrupted with wrong or stray
characters.
- The Security World has become corrupted or
unusable.

You may not have correct permissions to use the
Security World directory. If using a fail-over cluster
with nShield Connects similar to the example shown,
you will require both remote and shared directory
permissions on the RFS host.

If using a cluster with an RFS, make sure you have set
the %NFAST_KMLOCAL% variable as a system
variable, and NOT as a local variable.

When you attempt to create a key in the
SQLEKM provider using the Microsoft SQL
Server Management Studio, an error message
similar to the following is returned -

Msg 33035, Level 16, State 1, Line 2 Cannot

create key '<some_key_name>' in the

provider. Provider error code: 1. (Failure -

Consult EKM Provider for details)

Using the Microsoft SQL Server Management Studio,
try: Go to <Database server name> => Security =>
Cryptographic Providers => <SQLEKM provider
name>. Right-click and select Disable Provider.
Then, right-click and select Enable Provider. Wait for
about a minute before repeating your attempt to
create the key.

If the above actions do not work, restart the MS SQL
Server. (You may need administrator privileges to do
this.)

Microsoft SQL Server Management Studio
displays a message stating that a session could
not be opened for the SQLEKM provider.

There is either no smart card in the card reader, or
an incorrect smart card in the card reader.
Alternatively, the wrong OCS name or passphrase
has been entered into the credentials.

If setting up or managing the TDE encryption keys,
you must use the same OCS or softcard for your login
credential as used for the tdeCredential to be
created.

nShield Microsoft SQL Server Integration Guide 62

Chapter 6: Troubleshooting

Problem / issue Suggested diagnosis / solution

Microsoft SQL Server Management Studio
displays a message stating that a DES key could
not be created.

The DES key cannot be created because the Thales
nShield HSM is operating at a strict level of
compliance with the FIPS 140-2 Level 3 security
standard. DES keys can only be created where the
Thales nShield HSM is operating at a non-strict level
of compliance.

Microsoft SQL Server Management Studio
displays a message stating that the key type
property of the key returned by the SQLEKM
provider does not match the expected value.

An attempt was made to create an asymmetric or a
symmetric key with an unsupported algorithm.

When you perform a query using the Microsoft
SQL Server Management Studio, an error
message similar to the following is returned - Msg
10054, Level 20, State 0, Line 0 A

transport-level error has occurred when

sending the request to the server.

(provider: TCP Provider, error: 0 - An

existing connection was forcibly closed by

the remote host.)

This often means that some change occurred in the
system where a communication channel was
temporarily disrupted. Usually the channel will
recover by itself. Wait a few moments and try the
query again.

After loss of communication with a remote HSM
all database queries fail with an error.

Communications between the SQL Server and
SQLEKM provider have failed to re-establish after
loss. Restart the MS SQL Server. (You may need
administrator privileges to do this.)

When viewing data in a table that is expected
to be visibly encrypted or decrypted, the data is
displayed as NULL.

l You may be attempting to encrypt/decrypt data
that requires a key you do not have permission to
use under your current credential.

l You have not inserted an operator card, or you
have the wrong operator card.

l You are attempting to view data in an unsuitable
format.

You are using a AlwaysOn availability group and
you see that a database is marked as (Not
synchronizing/Recovery pending)

Possible causes are a permissions problem in
accessing a database, or a secondary replica has not
been successfully updated following changes to the
primary.

If you have recently altered your login credentials,
check the credentials are correct, then restart the
SQL Server instance that is not synchronized.

If you think a replica has not updated correctly, try:

l Running the script Resynchronizing in an
availability group in Appendix A: T-SQL shortcuts
and tips on page 67.

l Update the database from the latest backup log.

nShield Microsoft SQL Server Integration Guide 63

Chapter 7: Uninstalling and Upgrading

Chapter 7: Uninstalling and
Upgrading
CAUTION:

l If you delete a SQLEKM provider login credential you will no longer be able to use it for the
SQLEKM provider.

l If you delete an associated SQL Server login you will no longer be able to use it to access the SQL
Server or SQLEKM provider and will be locked out.

Turning off TDE and removing TDE setup
You must turn off TDE on all your databases and remove TDE setup before uninstalling the Thales
Database Security Option Pack for SQL Server. Otherwise, you will not be able to decrypt any
databases encrypted with TDE.

Before disabling and removing TDE encryption you are advised to back up the encrypted database
(see Backing up a database with SQL Server Management studio on page 58) and associated
Security World.

If you are using a version of SQL Server 2008, please read Microsoft SQL Server advice note
Microsoft Article ID: 2300689. Check Microsoft support for details.

1. In SQL Server Management Studio, navigate to Databases > TestDatabase.
2. Right-click TestDatabase, then select Tasks > Manage Database Encryption...
3. Ensure Set Database Encryption On is deselected, then click OK.
4. Wait for the decryption process to finish. Check this by referring to the section How to check the

TDE encryption/decryption state of a database on page 41.
5. When the database has completed decryption, drop the encryption key using the following T-SQL

query:

USE TestDatabase

DROP DATABASE ENCRYPTION KEY;

GO

6. Restart the database instance. If you are using a database failover cluster you may have to do
this directly on the active server. In SQL Server Management Studio right-click on the instance
and select Restart.

7. In SQL Server Management Studio, navigate to Security > Logins, and select the TDE login you
wish to remove (for example, tdeLogin). Right-click on the selected login and select Properties.

8. Ensure the associated credential (for example, tdeCredential) is highlighted then choose
Remove. Untick the box Map to credential . Click OK.

nShield Microsoft SQL Server Integration Guide 64

http://support.microsoft.com/kb/2300689

Chapter 7: Uninstalling and Upgrading

9. In SQL Server Management Studio, navigate to Security > Credentials, and select the same
credential you previously removed from the login (for example, tdeCredential). Right-click on the
credential and select Delete. In the following screen, select OK.

10. In SQL Server Management Studio, navigate to Security > Logins, and select the TDE login you
wish to remove (for example, tdeLogin). Right-click on the selected login and select Delete. In the
following screen, select OK.

11. In SQL Server Management Studio, navigate to Databases > System Databases > master
>Security > Asymmetric keys.
l Select the key you wish to remove (for example, dbAsymWrappingKey). Right-click on the key
and select Delete.

l Alternatively you can use the following query:

USE master

DROP ASYMMETRIC KEY dbAsymWrappingKey REMOVE PROVIDER KEY;

GO

Uninstalling the Thales Database Security Option Pack for SQL
Server
Do not uninstall the Thales Database Security Option Pack for SQL Server until you have:

l decrypted any data encrypted using the SQLEKM provider in all your databases
l turned off TDE.

To uninstall the Thales Database Security Option Pack for SQL Server from Microsoft SQL Server:

1. Remove the loginCredential from the logged-in user:
a. In SQL Server Management Studio, select Security > Logins and open up the properties of

the logged-in user.
b. Select loginCredential, then click Remove, then OK.

2. Select Security > Credentials, and delete the loginCredential.
3. Disable and remove the SQLEKM provider:

a. Select Security > Cryptographic Providers.
b. Right-click to select the SQLEKM provider and click Disable Provider.
c. A dialog is displayed which shows that this action was successful. Click Close.
d. Right-click to select the disabled SQLEKM provider, then click Delete, then OK.

4. Select Start > Control Panel > Administrative Tools > Services (or Start > Administrative Tools
> Services, depending on your version of Windows). Select SQL Server (MSQLSERVER) and click
Action > Stop.

5. Select Start > Control Panel > Add/Remove programs (or Uninstall program, depending on
your version of Windows). Select Database Security Option Pack for SQL Server then click
Uninstall.

6. A dialog is displayed asking if you want to continue with uninstalling the Thales Database
Security Option Pack for SQL Server. Click Yes.

7. A setup status screen is displayed while the Thales Database Security Option Pack for SQL Server
is uninstalled. When InstallShield has finished uninstalling the program, click Finish to complete
the removal of the program from your system.

nShield Microsoft SQL Server Integration Guide 65

Upgrading

8. Select Start > Control Panel > Administrative Tools > Services (or Start > Administrative Tools
> Services, depending on your version of Windows). Select SQL Server (MSQLSERVER) then click
Action > Start.

Upgrading
Enhancements will be made to the Thales Database Security Option Pack for SQL Server over time,
and product upgrades made available to customers. To upgrade your product:

1. In SQL Server Management Studio, select Start > Control Panel > Administrative Tools >
Services (or Start > Administrative Tools > Services, depending on your version of Windows).
Select SQL Server (MSQLSERVER) and click Action > Stop.

2. Uninstall the existing Database Security Option Pack for SQL Server, using the procedure
described in Uninstalling the Thales Database Security Option Pack for SQL Server on page 65.

3. Install the upgraded version of the Thales Database Security Option Pack for SQL Server, using
the procedure described in Installation on page 17.
Note: You must install the upgraded SQLEKM provider to the same directory as the previous

installation. This ensures that the replacement provider files are found automatically when
the Microsoft SQL Server instances are started.

4. Select Start > Control Panel > Administrative Tools > Services (or Start > Administrative Tools
> Services, depending on your version of Windows). Select SQL Server (MSQLSERVER) and click
Action > Start.

nShield Microsoft SQL Server Integration Guide 66

Appendix A: T-SQL shortcuts and tips

Appendix A: T-SQL shortcuts and tips
The following T-SQL queries provide assistance or alternative methods to perform some of the
examples shown in this document.

Creating a database
To create a database called TestDatabase.

USE master

GO

CREATE DATABASE TestDatabase;

GO

Creating a table
To create the following example table called TestTable within a previously created TestDatabase.

USE TestDatabase

GO

CREATE TABLE TestTable (FirstName varchar(MAX), LastName varchar(MAX),

NationalIdNumber varbinary(MAX), EncryptedNationalIdNumber varbinary(MAX),

DecryptedNationalIdNumber varbinary(MAX));

GO

INSERT INTO TestTable (FirstName, LastName, NationalIdNumber) VALUES ('Jack', 'Shepard',

156587454525658);

INSERT INTO TestTable (FirstName, LastName, NationalIdNumber) VALUES ('John', 'Locke',

2365232154589565);

INSERT INTO TestTable (FirstName, LastName, NationalIdNumber) VALUES ('Kate', 'Austin',

332652021154256);

INSERT INTO TestTable (FirstName, LastName, NationalIdNumber) VALUES ('James', 'Ford',

465885875456985);

INSERT INTO TestTable (FirstName, LastName, NationalIdNumber) VALUES ('Ben', 'Linus',

5236566698545856);

INSERT INTO TestTable (FirstName, LastName, NationalIdNumber) VALUES ('Desmond', 'Hume',

6202366652125898);

INSERT INTO TestTable (FirstName, LastName, NationalIdNumber) VALUES ('Daniel', 'Faraday',

7202225698785652);

INSERT INTO TestTable (FirstName, LastName, NationalIdNumber) VALUES ('Sayid', 'Jarrah',

8365587412148741);

INSERT INTO TestTable (FirstName, LastName, NationalIdNumber) VALUES ('Richard', 'Alpert',

2365698652321459);

INSERT INTO TestTable (FirstName, LastName, NationalIdNumber) VALUES ('Jacob', 'Smith',

12545254587850);

GO

nShield Microsoft SQL Server Integration Guide 67

Viewing a table

Viewing a table
To view the previously created TestTable:

SELECT TOP 10 [FirstName]

,[LastName]

,[NationalIDNumber]

,[EncryptedNationalIdNumber]

,[DecryptedNationalIdNumber]

FROM [TestDatabase].[dbo].[TestTable]

To view the previously created TestTable with the NationalIDNumber in the original decimal form:

SELECT TOP 10 [FirstName]

,[LastName]

,CAST(NationalIdNumber AS decimal(16,0)) AS [NationalIDNumber]

,[EncryptedNationalIdNumber]

,[DecryptedNationalIdNumber]

FROM [TestDatabase].[dbo].[TestTable]

To view the previously created TestTable with the NationalIDNumber in the original decimal form, and
also show the NationalIdNumber in VarBinary form:

SELECT TOP 10 [FirstName]

,[LastName]

,CAST(NationalIdNumber AS decimal(16,0)) AS [NationalIDNumber]

,(NationalIdNumber) AS VarBinNationalIdNumber

,[EncryptedNationalIdNumber]

,[DecryptedNationalIdNumber]

FROM [TestDatabase].[dbo].[TestTable]

nShield Microsoft SQL Server Integration Guide 68

Appendix A: T-SQL shortcuts and tips

Making a database backup
To make a database backup:

USE TestDatabase;

GO

BACKUP DATABASE TestDatabase

TO DISK = '<Drive>:\<Backup_directory>\TestDatabase_SomeState.bak'

WITH NOFORMAT,

INIT,

NAME = TestDatabase_SomeState Backup',

SKIP,

NOREWIND,

NOUNLOAD,

STATS = 10

GO

Where

l <Drive>:\<Backup_directory> is the path to the directory to store the backup. If you are using a
database failover cluster this will be relative to the active server.

Adding a credential
The following query will add a credential to the database:

CREATE CREDENTIAL <loginCredential> WITH IDENTITY = '<Credential name>', SECRET =

'<Credential passphrase>' FOR CRYPTOGRAPHIC PROVIDER

<Name of SQLEKM provider>;

ALTER LOGIN "<Domain>\<Login name>" ADD CREDENTIAL <loginCredential>;

Where

l <loginCredential> is the name you wish to provide for the credential.
l <Credential name> is the name of the OCS or softcard you wish to use as a credential.
l <Credential passphrase> is the passphrase of the OCS or softcard you wish to use as a credential.
l <Name of SQLEKM provider> is the SQLEKM provider name you are using.
l <Domain> is the relevant login domain.
l <Login name> is the relevant login name (to the database host).

Removing a credential
To remove a credential from the database:

ALTER LOGIN "<Domain>\<Login name>"

DROP CREDENTIAL <loginCredential>;

See Adding a credential on page 69 for terms used.

nShield Microsoft SQL Server Integration Guide 69

Creating a TDEDEK

Creating a TDEDEK
To create a TDEDEK using TestDatabase and dbAsymWrappingKey as an example:

USE TestDatabase;

CREATE DATABASE ENCRYPTION KEY WITH ALGORITHM = AES_256

ENCRYPTION BY SERVER ASYMMETRIC KEY dbAsymWrappingKey;

GO

Removing a TDEDEK
To remove a TDEDEK using TestDatabase as an example:

USE TestDatabase

DROP DATABASE ENCRYPTION KEY;

Switching on TDE
To switch on TDE using TestDatabase as an example:

ALTER DATABASE TestDatabase SET ENCRYPTION ON;

Switching off TDE
To switch off TDE using TestDatabase as an example:

ALTER DATABASE TestDatabase SET ENCRYPTION OFF;

Dropping an SQLEKM Provider
To drop the services of an existing SQLEKM Provider:

DROP CRYPTOGRAPHIC PROVIDER <Name of SQLEKM provider>

Where

l <Name of SQLEKM provider> is the name of an already existing SQLEKM Provider.

nShield Microsoft SQL Server Integration Guide 70

Appendix A: T-SQL shortcuts and tips

Disabling SQLEKM Provision
To disable the EKM provision in an SQL Server installation. This will disable all EKM providers:

sp_configure 'show advanced options', 1; RECONFIGURE;

GO

sp_configure 'EKM provider enabled', 0; RECONFIGURE;

GO

Resynchronizing in an availability group
To resynchronize a database called ‘SourceDatabase’ in an availability group, try:

USE master;

GO

ALTER DATABASE [SourceDatabase] SET HADR RESUME

Checking encryption state
To check the encryption state of your databases:

SELECT DB_NAME(e.database_id) AS DatabaseName, e.database_id, e.encryption_state, CASE

e.encryption_state

WHEN 0 THEN 'No database encryption key present, no encryption'

WHEN 1 THEN 'Unencrypted'

WHEN 2 THEN 'Encryption in progress'

WHEN 3 THEN 'Encrypted'

WHEN 4 THEN 'Key change in progress'

WHEN 5 THEN 'Decryption in progress'

END AS encryption_state_desc, c.name, e.percent_complete FROM sys.dm_database_encryption_

keys AS e

LEFT JOIN master.sys.certificates AS c ON e.encryptor_thumbprint = c.thumbprint

nShield Microsoft SQL Server Integration Guide 71

Appendix B: Restarting a recovered HSM

Appendix B: Restarting a recovered
HSM
In HSM loadsharing, where a HSM has failed but service has continued on a partner HSM, the
SQLEKM provider will not automatically start using the failed HSM if it recovers and becomes available
again.

The recommended procedure for restarting a recovered HSM:

l Close down all open sessions that are using the SQLEKM provider, disable and then re-enable the
provider.
This will cause SQL Server to re-initialize the SQLEKM provider, which will refresh the list of
available HSMs.
To do this in SQL Server Management Studio:
l Close all open query windows.
l In SQL Server Management Studio, navigate to Security > Cryptographic Providers > Name
of provider.

l Right-click Name of provider and choose Disable Provider.
l Right click Name of provider, choose Enable Provider.

Alternatively, you can:

l Restart the SQL Server instance.
l If using a failover cluster, move the SQL Server instance to another node in the cluster.

nShield Microsoft SQL Server Integration Guide 72

Appendix C: Using TDE within an AlwaysOn availability group

Appendix C: Using TDE within an
AlwaysOn availability group
These procedures have been tested for an availability group that used two servers. Server 1 held a
(nominal) primary replica, Server 2 held a (nominal) secondary replica. Primary and secondary replicas
were read/write. The configuration used nShield Connect HSMs, and no shared disk. Each server
could be logged into directly, or through a cluster availability group (virtual) address. The
configuration also required a third server to act as RFS.

The procedures described here are based on this configuration. If you require different arrangements,
please contact Thales support if you need assistance.

Note: If you have installed Thales V12.00 Security World software and you are using Java cards, be
sure you have configured the cardlist file appropriately. In a cluster, you will need the same
cardlist file contents on all servers in order to access the same cards. Please refer to the User
Guide for your nShield HSM

Setting up and switching on TDE
Please note the following:

l The MSSQL Server Studio Add Database Wizard (versions to SQL Server 2014) will not support
addition of a database that is already encrypted, or that includes a database encryption key even if
encryption is switched off. However, you may set up TDE encryption for an existing non-encrypted
database that is already within an availability group using T-SQL, as described below.

l SQL Server (versions to SQL Server 2014) may not support a readable secondary using a clustered
columnstore index within the context of availability group failover. Please see
https://connect.microsoft.com/SQLServer/feedback/details/1348268/availability-group-
databasesnapshot-isolation-level-error-35371-on-readable-secondary.

The following steps should be performed for each database, the primary, and each secondary, that is
part of the availability group, and for which you wish to switch on TDE encryption.

Before starting, it is assumed that the database you wish to encrypt:

l Already exists
l Is already part of an availability group within a cluster
l Is NOT currently encrypted, and includes no database encryption key (TDEDEK)
l Has never been encrypted before. If it has, you may see errors and a request for a log backup. In
this case, please note section Taking a log backup on page 79.

In the examples shown here, the database to be encrypted is called SourceDatabase, and the
database wrapping key is called ekmWrappingKey in the SQLEKM provider, and dbWrappingKey in the
master database. Change names or other parameters to your own requirements. Also, these steps
assume that a wrapping key of the same name does not already exist in either the SQLEKM provider
or the master database.

nShield Microsoft SQL Server Integration Guide 73

https://connect.microsoft.com/SQLServer/feedback/details/1348268/availability-group-databasesnapshot-isolation-level-error-35371-on-readable-secondary
https://connect.microsoft.com/SQLServer/feedback/details/1348268/availability-group-databasesnapshot-isolation-level-error-35371-on-readable-secondary

Appendix C: Using TDE within an AlwaysOn availability group

The examples show T-SQL code options for using either an OCS or else a softcard credential. Select
which option you prefer and maintain that choice throughout the examples (comment out the option
you do not wish to use). In these examples the OCS option is chosen.

Assuming that your servers and database(s) are already configured within an availability group, and
you will use nShield Connects as your HSM modules, please prepare by making sure:

l You have SQL Server logins and appropriate permissions to configure or access the SQL Server
and Thales software to be installed. This may include remote access authorization. If your SQL
Server process is running as an autonomous service user, this must be granted appropriate
permissions. You may need your system administrator to provide consent.

l Your Thales Security World and Database Security Option Pack for SQL Server software is installed
and configured in the same manner as that described in the section SQL Server database failover
cluster using nShield Connects on page 21 (for this case, you may ignore the shared disk, as an
availability group cluster can function without one).

l Your SQLEKM provider is enabled as described in the section Enabling the SQLEKM provider on
page 25, you have created a suitable Security World on the RFS and which is loaded onto the
nShield Connects. See the nShield Connect User Guide for help.

l You have created an OCS cardset, or softcard, as credential. Please refer to the User Guide for
your HSM for further information about creating an OCS or a softcard. If you are using OCS cards,
they must have a 1/N quorum, all be programmed with the exact same passphrase, and be from
the same OCS cardset. Note: We recommend a strong passphrase of at least 10 characters in
length. Check your organisation’s security policies.

l If you are using OCS cards, you must have at least the same number (N) as HSMs you will be
using. An OCS card must be inserted into the card reader of each HSM.

l The person managing or setting up the TDE encryption keys must use the same OCS or softcard for
their login credential as is used for the tdeCredential below.

Before proceeding with the following steps:

l Make sure your database is recently backed up
l Make sure that primary and secondary replicas are synchronized within the availability group, and
that failover can occur without any data loss

l If you prefer a particular server for the primary role, then you are failed over to that server
l You should also remember the roles (primary/secondary) that each server node starts with.

Perform the following steps in the order shown. The following description is written as if the server
nodes retain the initial primary or secondary roles they begin with. You can use the availability group
cluster virtual address, and manually failover between the nodes in order to access them, but bear in
mind this description refers to the initial (starting) role of each node, even if its actual role later
changes.

nShield Microsoft SQL Server Integration Guide 74

Setting up and switching on TDE

1. On Primary: Set up the database wrapping key, TDE credential and login:

--Make sure you are running this on the PRIMARY.

--This script sets up a TDE wrapping key, login and credential on the primary.

--Create wrapping key

USE master

CREATE ASYMMETRIC KEY dbWrappingKey FROM PROVIDER SQLEKM

WITH PROVIDER_KEY_NAME='ekmWrappingKey',

CREATION_DISPOSITION = CREATE_NEW, ALGORITHM = RSA_2048;

GO

--Create wrapping key credential. Select one of OCS card, or else softcard.

--Comment out option you do not want to use.

--OCS card example

USE master

CREATE LOGIN tdeLogin FROM ASYMMETRIC KEY dbWrappingKey;

CREATE CREDENTIAL tdeCredential WITH IDENTITY = 'OCS1', SECRET = '+453X7V]MR'

FOR CRYPTOGRAPHIC PROVIDER SQLEKM;

ALTER LOGIN tdeLogin ADD CREDENTIAL tdeCredential;

GO

--Softcard example. Not used here, so commented out.

--Use master

--CREATE LOGIN tdeLogin FROM ASYMMETRIC KEY dbWrappingKey;

--CREATE CREDENTIAL tdeCredential WITH IDENTITY = 'scard1', SECRET = '0O*dG0ffz2'

--FOR CRYPTOGRAPHIC PROVIDER SQLEKM;

--ALTER LOGIN tdeLogin ADD CREDENTIAL tdeCredential;

nShield Microsoft SQL Server Integration Guide 75

Appendix C: Using TDE within an AlwaysOn availability group

2. On (each) secondary: Restart the SQL Server instance. Set up the database wrapping key, TDE
credential and login.

--Make sure you are running this on the SECONDARY.

--NOTE the wrapping key must already exist, as created by the primary.

--This script opens a wrapping key, TDE login and credential on a secondary.

--The credential must match (same OCS cardset/softcard and password) as primary.

--Create wrapping key

USE master

CREATE ASYMMETRIC KEY dbWrappingKey FROM PROVIDER SQLEKM

WITH PROVIDER_KEY_NAME='ekmWrappingKey',

CREATION_DISPOSITION = OPEN_EXISTING; --Wrapping key should already have been created on

the primary.

GO

--Create wrapping key credential. Select one of OCS card, or else softcard.

--Comment out option you do not want to use.

--OCS card example

USE master

CREATE LOGIN tdeLogin FROM ASYMMETRIC KEY dbWrappingKey;

CREATE CREDENTIAL tdeCredential WITH IDENTITY = 'OCS1', SECRET = '+453X7V]MR'

FOR CRYPTOGRAPHIC PROVIDER SQLEKM;

ALTER LOGIN tdeLogin ADD CREDENTIAL tdeCredential;

GO

--Softcard example. Not used here, so commented out.

--Use master

--CREATE LOGIN tdeLogin FROM ASYMMETRIC KEY dbWrappingKey;

--CREATE CREDENTIAL tdeCredential WITH IDENTITY = 'scard1', SECRET = '0O*dG0ffz2'

--FOR CRYPTOGRAPHIC PROVIDER SQLEKM;

--ALTER LOGIN tdeLogin ADD CREDENTIAL tdeCredential;

3. On both primary and secondary, check the database remains synchronized. To do this, on SQL
Server Management Studio, look at [Server name] → [Name of your database]. If after the
previous steps you find that the database is now ‘Not Sychronized’, resynchronize by running
the following query:

--Run on primary/secondary that appears to be unsynchronized with availability group.

USE master;

GO

ALTER DATABASE [SourceDatabase] SET HADR RESUME

If the database remains unsynchronized after performing this step, you may have configuration
problems. Attempt to correct this before proceeding.

nShield Microsoft SQL Server Integration Guide 76

Setting up and switching on TDE

4. On primary: Create the database encryption key and switch on TDE encryption.

--Make sure you are running this on PRIMARY

--Create actual database encryption key (TDEDEK)

USE SourceDatabase;

CREATE DATABASE ENCRYPTION KEY WITH ALGORITHM = AES_256

ENCRYPTION BY SERVER ASYMMETRIC KEY dbWrappingKey;

GO

--A short delay may be required here before switching on encryption.

WAITFOR DELAY '00:00:05'; -- Set delay period as required. One second = '00:00:01'

-- Break any connection with the SourceDatabase so that encryption can commence.

USE [master];

GO

-- Enable TDE (switch on encryption) on the SourceDatabase:

ALTER DATABASE SourceDatabase SET ENCRYPTION ON;

GO

If your database has previously been encrypted you may see errors at this point. If you are asked
to take a pending log backup please perform the query shown in section Taking a log backup on
page 79. Then, repeat the following:

-- Break any connection with the SourceDatabase so that encryption can commence.

USE [master];

GO

-- Enable TDE (switch on encryption) on the SourceDatabase:

ALTER DATABASE SourceDatabase SET ENCRYPTION ON;

GO

nShield Microsoft SQL Server Integration Guide 77

Appendix C: Using TDE within an AlwaysOn availability group

5. After performing the above steps, check the TDE encryption is switched on and the database is
functioning correctly.

First check the encryption state on the primary by running the following Encryption state check
query:

-- Encryption state check. Returns the encryption state of databases.

SELECT DB_NAME(e.database_id) AS DatabaseName, e.database_id, e.encryption_state,

CASEe.encryption_state

WHEN 0 THEN 'No database encryption key present, no encryption'

WHEN 1 THEN 'Unencrypted'

WHEN 2 THEN 'Encryption in progress'

WHEN 3 THEN 'Encrypted'

WHEN 4 THEN 'Key change in progress'

WHEN 5 THEN 'Decryption in progress'

END AS encryption_state_desc, c.name, e.percent_complete FROM sys.dm_database_

encryption_keys

AS e

LEFT JOIN master.sys.certificates AS c ON e.encryptor_thumbprint = c.thumbprint

The encryption state for your database should be marked as Encrypted (if it is marked as
Encryption in progress, wait a while and try again).

You should now be able to failover to a secondary with no data loss. After failing over to the
secondary, run the same query above to check the encryption state for your database is also
Encrypted on the secondary.

Failover between the nodes in your configuration, and attempt some database queries while
connected to each. Add data to the database, query that same data, then, delete the data you
just added, or whatever other queries you think appropriate.

Satisfy yourself that all is functioning correctly before continuing to use the TDE encrypted
database.

nShield Microsoft SQL Server Integration Guide 78

Taking a log backup

Taking a log backup
If you get an error requesting that you take a log backup, try adapting the following code to your own
requirements, and then run it.

USE master;

GO

ALTER DATABASE <Name-of-your-database>

SET RECOVERY FULL;

GO

USE master;

GO

-- Note. You should have provided a path to your backups when setting up your

-- availability group.

EXEC sp_addumpdevice 'disk', '<Name-of-your-device>',

‘<Path-to-your-backups>\<Name-of-your-log-backup-file>';

GO

-- Back up the log

BACKUP LOG <Name-of-your-database> TO <Name-of-your-device>;

GO

--Drop backup device

EXEC sp_dropdevice '<Name-of-your-device>';

Example:

USE master;

GO

ALTER DATABASE SourceDatabase

SET RECOVERY FULL;

GO

USE master;

GO

EXEC sp_addumpdevice 'disk', 'EncryptedSourceDatabaseBackupLog',

'\\Server-2\NetWorkShareFolder\SourceDatabase_20160210122459';

GO

-- Back up the log

BACKUP LOG SourceDatabase TO EncryptedSourceDatabaseBackupLog;

GO

--Drop backup device

EXEC sp_dropdevice 'EncryptedSourceDatabaseBackupLog';

nShield Microsoft SQL Server Integration Guide 79

Appendix C: Using TDE within an AlwaysOn availability group

Removing TDE encryption from an AlwaysOn availability group
This procedure assumes you have already successfully set up TDE encryption in a similar manner to
that described in the section Setting up and switching on TDE on page 73.

Perform the following steps in the order shown.

1. On primary: Switch off TDE encryption.

--Run this on PRIMARY in high availability group environment.

--Switch off TDE encryption.

USE [master];

ALTER DATABASE SourceDatabase SET ENCRYPTION OFF;

GO

2. On primary: Wait until decryption has finished. Check this by using the Encryption state check
on page 78. When decryption has completed, continue to next step.

3. On primary: Drop the database encryption key (TDEDEK).

--Drop the database encryption key (TDEDEK)

USE SourceDatabase

DROP DATABASE ENCRYPTION KEY;

4. On (each) secondary: Drop TDE login and credential, and wrapping key (TDEKEK) from
database.

--You must have switched off TDE encryption on primary before running this script.

--Run this on SECONDARY in high availability group environment.

USE master;

GO

--Drop the TDE credential and login

ALTER LOGIN tdeLogin DROP CREDENTIAL tdeCredential;

DROP LOGIN tdeLogin;

DROP CREDENTIAL tdeCredential;

--Drop the wrapping key from database only

DROP ASYMMETRIC KEY dbWrappingKey;

nShield Microsoft SQL Server Integration Guide 80

Removing TDE encryption from an AlwaysOn availability group

5. On primary: Drop TDE login and credential, and wrapping key (TDEKEK) from database. If you
also wish to drop the wrapping key (TDEKEK) from the SQLEKM provider, be sure it is safe to do
so.

--Run this on PRIMARY in high availability group environment.

USE master;

GO

--Drop the TDE credential and login on primary.

ALTER LOGIN tdeLogin DROP CREDENTIAL tdeCredential;

DROP LOGIN tdeLogin;

DROP CREDENTIAL tdeCredential;

--Select option below to remove wrapping key from database only, or both database

--and SQLEKM provider.

--If you remove the wrapping key copy from the SQLEKM provider, it will be lost

--forever. If you do this, be sure this is what you want to do.

--Drop the wrapping key from database only

DROP ASYMMETRIC KEY dbWrappingKey;

--Drop the wrapping key from both database and SQLEKM provider

--DROP ASYMMETRIC KEY dbWrappingKey REMOVE PROVIDER KEY;

6. After performing the above steps, check the TDE encryption is switched off on the primary by
running the same Encryption state check query as shown above. The previously encrypted
database should no longer be listed.

You may see the tempdb database remains shown as Encrypted. This appears to be a known
Microsoft bug. To remove this, restart the SQL Server instance.

Failover to a secondary, and check that there is no data loss. Run the same Encryption state
check query on the secondary as shown above. The previously encrypted database should no
longer be listed.

nShield Microsoft SQL Server Integration Guide 81

Appendix D: Using an OCS quorum of K/N where K>1

Appendix D: Using an OCS quorum
of K/N where K>1
Note: In the SQLEKM context, using an OCS quorum where K>1 is not recommended, as explained

below. For this reason, it has only been tested in a SQLEKM context for a standalone system
using one HSM module, and this is the only configuration described here. Both Cell and TDE
encryption were tested to work satisfactorily in this standalone configuration.

Overview
A SQL Server credential (as used for EKM) maps one protecting token that is an OCS card or softcard,
to one stored passphrase. Softcards are singular and do not have a quorum, so the SQL Server
credential matches them quite well. On the other hand, an OCS cardset does have a quorum, but as
the SQL Server credential can store information for only one token at a time, a quorum greater than
one cannot be directly supported. Neither can different passphrases for each card in an OCS cardset
be supported by the same credential.

Furthermore, a SQL Server user login can only be associated with one SQL Server credential at a time
(although a credential can be associated with more than one login at the same time). Therefore direct
use of a SQL Server credential implies that we are restricted to using an OCS cardset with a 1/N
quorum, and every OCS card must use an identical passphrase if they are to be used interchangeably
with the same credential. But this means the benefits of a quorum of more than one OCS card are lost.

As will be shown below, it is possible to use a quorum of multiple OCS cards (K/N where K>1) by
preloading. Unfortunately, this opens up extra security risks and failure recovery problems. Its use is
not normally recommended in a SQLEKM context.

In order to employ a quorum of more than one OCS card, we must use the Thales ‘preload’ utility to
load the OCS quorum onto a nShield HSM before use. This will also require setting up a tokens file.
Preloading allows an SQL Server credential to function with a designated OCS (K>1) cardset for an
associated user login.

Obviously, for the ‘preload’ utility to run, it must be in a suitably installed configuration as described
elsewhere in this document, with a usable Security World and HSM module available. The OCS
cardset with K>1 must have already been created. In this case, each OCS card can have a different
passphrase.

Using the preload utility
To use the Thales preload utility with the SQLEKM provider, you must:

1. Set up a path to a tokens file using the NFAST_NFKM_TOKENSFILE environment variable. That
is, NFAST_NFKM_TOKENSFILE=<path>\<name-of-tokens-file.

If a tokens file of the same name already exists at the location given, delete it.

nShield Microsoft SQL Server Integration Guide 82

Appendix D: Using an OCS quorum of K/N where K>1

For security reasons, you must take care as to who can access the tokens file, and protect it. If
there is only one, or a small number of logins that need to use this variable, it may be practicable
to set upNFAST_NFKM_TOKENSFILE as a local variable for each user. Otherwise, set it up as a
system variable, which is likely to be more suitable if you are using TDE. For the subdirectory that
will contain the tokens file, either:

l Set read/write/execute permissions for each individual (login) that needs to use the tokens
file, or

l Create a new user group, and provide group read/write/execute permissions for members of
that group to use the tokens file.

l All other users should be excluded access to the tokens file.

2. Run the preload utility on a command line where <OCS-name> is the name of an OCS cardset in
which K>1.

>> preload -f "%NFAST_NFKM_TOKENSFILE%" --cardset-name=<OCS-name> pause

The utility will prompt you to insert a succession of OCS cards into the HSM card reader, and
enter their correct passphrase, until the quorum is reached. Do not remove the final card from the
HSM slot. When the quorum is complete, the preload utility goes into a paused state. Do not
terminate it.

3. Restart the SQL server.
4. Set up a SQL Server credential for the OCS name. In this case, while an OCS passphrase must

be supplied for the credential, it will be ignored in practice. Associate the credential with the
required login. If setting up a TDE, the user must utilize the same OCS for their login credential
as used for the TDE credential. For a standalone configuration, create the TDEKEK, TDE login
and credential, TDEDEK, and switch on encryption in the usual way.

Example for standalone system

In this example the OCS cardset used is OCS3 and it has a 2/3 quorum:

1. Select Start => Control Panel\System and Security\System\Advanced System
Setting\Environment Variables to set upNFAST_NFKM_TOKENSFILE.

Provide suitable protections for access to the tokens file. For example:

NFAST_NFKM_TOKENSFILE=C:\ProgramData\nCipher\Key Management Data\TestPreload\Tokensfile

If a tokens file of the same name already exists at the location given, delete it.

nShield Microsoft SQL Server Integration Guide 83

Operational considerations

2.
>> preload -f "%NFAST_NFKM_TOKENSFILE%" --cardset-name=OCS3 pause

Loading cardsets:

OCS3 on modules 1

Loading `OCS3':

Module 1 slot 0: `OCS3' #2

You must enter a passphrase for this card.

Module 1 slot 0:- passphrase supplied - reading card

Module 1 slot 0: `OCS3' #2: already read

Module 1 slot 0: empty

Module 1 slot 0: `OCS3' #1

You must enter a passphrase for this card.

Module 1 slot 0:- passphrase supplied - reading card

Card reading complete.

Stored Cardset: OCS3 (ce63...) on module #1

Loading complete; now pausing

[Do not terminate the preload program.]

[Do not remove final card of quorum from HSM slot.]

3. Restart SQL Server.
4. Set up a SQL Server credential for the OCS cardset (in this case, the passphrase supplied will be

ignored), and associate the credential with the required login(s).
5. You should now be able to run queries where the SQLEKM provider keys are protected by the

K/N cardset where K>1.

Operational considerations
After running the preload utility as shown above, it will create the tokens file in the specified folder. At
this point the OCS card authorization should have been set up in the HSM module. Check that the
authorization works by performing some queries that require encryption keys protected by the OCS
cardset. If the authorization works, then:

l If the OCS cardset is persistent, you may remove the final card from the HSM slot
l If the OCS cardset is not persistent, you must leave the final card in the HSM slot, as removing it
will lose the cardset authorization.

The preload utility creates the tokens file. This file holds logical IDs or tokens that are internal to the
Thales software, and relate to the OCS cardset that is loaded, and to any keys the cardset protects.
These tokens are used by the Thales hardserver and HSM modules within the configuration to provide
the OCS card authorization. Unless there is some system failure, the authorization remains valid until
the hardserver is restarted, or the module(s) are cleared. Note too, that if the OCS cardset is non-
persistent, then removing the final card of the quorum from the HSM slot will also lose the
authorization.

Each time a new tokens file is created, a different set of logical tokens may be generated, even if the
same OCS card(s) are being loaded. A tokens file cannot be reused once its current authorization is
lost. You should delete a tokens file that was previously used before creating a new one to replace it.

nShield Microsoft SQL Server Integration Guide 84

Appendix D: Using an OCS quorum of K/N where K>1

Please note that once the tokens file has been created and whilst its authorization remains valid, the
OCS cards it has loaded, and by implication any keys they are protecting, are available to any user or
application that can access that file and invoke the Thales software.

Unless care is taken, authorization to use the OCS cardset might not be tied to specific users or
applications. Also be aware that the passphrase supplied in the SQL Server credential is ignored,
although it is a stored password in any case. These factors represent a security risk. Steps must
therefore be taken to restrict access to the tokens file and Thales software, so that only the correct
users or applications can use them.

In the event that there is a failure of a HSM module or hardserver, say due to a temporary power
outage, the preloaded authorization will be lost. When the system returns to operation, the tokens file
will be invalid and a new one will have to be created. This will require deletion of the previous tokens
file, a repeat of the preload command, and manual insertion of the quorum of OCS cards. In other
words, the system cannot be set up to recover automatically.

Within a SQLEKM context, because of the extra security risks and poor failure recovery
characteristics, we recommend that you do not use a preloaded cardset. By implication, this means
you should not use a K/N OCS cardset where K>1, unless you have a strong reason for doing so. It
may possibly be acceptable for a small private system with restricted usage, which is closely
monitored, and where manual recovery from failure is tolerable. For a large or public system that is in
continuous use, and for which automatic recovery from failover is desired, then we do not recommend
you use this method.

nShield Microsoft SQL Server Integration Guide 85

Internet addresses
Web site: http://www.thales-esecurity.com/
Support: http://www.thales-esecurity.com/support-landing-page
Online documentation: http://www.thales-esecurity.com/knowledge-base
International sales offices: http://www.thales-esecurity.com/contact

Addresses and contact information for the main Thales e-Security sales offices are provided at the
bottom of the following page.

nShield Microsoft SQL Server Integration Guide 86

http://www.thales-esecurity.com/
http://www.thales-esecurity.com/support-landing-page
http://www.thales-esecurity.com/knowledge-base
mailto:msrms-hsm@thalesesec.com

About Thales e-Security

Thales e-Security is a leading global provider of data encryption and cyber security
solutions to the financial services, high technology manufacturing, government
and technology sectors. With a 40-year track record of protecting corporate and
government information, Thales solutions are used by four of the five largest
energy and aerospace companies, 22 NATO countries, and they secure more than
80 percent of worldwide payment transactions. Thales e-Security has offices in
Australia, France, Hong Kong, Norway, United Kingdom and United States.
For more information, visit www.thales-esecurity.com

www. t ha les-esecur it y . com

Follow us on:

https://twitter.com/Thalesesecurity
http://www.facebook.com/ThalesTes
http://www.linkedin.com/company/thales-e-security
http://www.youtube.com/thalesesecurity
http://www.thales-esecurity.com/blogs
http://www.thales-esecurity.com/

	Chapter 1: Introduction
	This guide
	Product configurations
	Supported platforms and environments

	Supported Thales nShield functionality
	Requirements
	Terminology
	More information
	Contacting Support

	Chapter 2: Overview
	Querying encrypted data

	Chapter 3: System installation and configuration
	Supported platforms and environments
	Installation
	Setting up as stand alone service
	Usage with database failover clusters
	SQL Server database failover cluster using nShield Solo
	SQL Server database failover cluster using nShield Connects
	Security Worlds, key protection and failover recovery

	Chapter 4: Configuring and using the SQLEKM provider
	Enabling the SQLEKM provider
	Creating a credential
	Checking the configuration
	Encryption and encryption keys
	Key naming, tracking and other identity issues
	Supported cryptographic algorithms
	Symmetric keys
	Creating and managing asymmetric keys
	Importing keys
	Transparent Data Encryption - TDE
	Creating a TDEKEK
	Setting up the TDE login and credential
	Creating the TDEDEK and switching on encryption
	Verifying by inspection that TDE has occurred on disk
	To replace the TDEKEK
	To replace the TDEDEK
	Switching off and removing TDE
	How to check the TDE encryption/decryption state of a database

	Cell Level Encryption (CLE)
	Encrypting and decrypting a single cell of data
	Encrypting and decrypting columns of data
	Creating a new table and inserting cells of encrypted data

	Viewing tables
	Checking keys
	Changes in the SQLEKM provider require SQL Server restart

	Chapter 5: Security World Data and back-up/restore
	The local directory
	Disaster recovery
	Backing up
	Backing up a database with SQL Server Management studio

	Restoring from a back-up

	Chapter 6: Troubleshooting
	Chapter 7: Uninstalling and Upgrading
	Turning off TDE and removing TDE setup
	Uninstalling the Thales Database Security Option Pack for SQL Server
	Upgrading

	Appendix A: T-SQL shortcuts and tips
	Creating a database
	Creating a table
	Viewing a table
	Making a database backup
	Adding a credential
	Removing a credential
	Creating a TDEDEK
	Removing a TDEDEK
	Switching on TDE
	Switching off TDE
	Dropping an SQLEKM Provider
	Disabling SQLEKM Provision
	Resynchronizing in an availability group
	Checking encryption state

	Appendix B: Restarting a recovered HSM
	Appendix C: Using TDE within an AlwaysOn availability group
	Setting up and switching on TDE
	Taking a log backup
	Removing TDE encryption from an AlwaysOn availability group

	Appendix D: Using an OCS quorum of K/N where K>1
	Overview
	Using the preload utility
	Example for standalone system

	Operational considerations

	Internet addresses

